AN INVARIANT MEASURE ARISING IN COMPUTER-SIMULATION OF A CHAOTIC DYNAMICAL SYSTEM

被引:6
作者
DIAMOND, P [1 ]
KLOEDEN, P [1 ]
POKROVSKII, A [1 ]
机构
[1] DEAKIN UNIV,DEPT MATH,GEELONG,VIC 3217,AUSTRALIA
关键词
CHAOS; INVARIANT MEASURE; COMPUTER SIMULATION;
D O I
10.1007/BF02430627
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When f(x) = 2x (mod 1) is simulated in a finite discretized space, with random round-off error, the dynamical states can be modeled as belonging to a family of Markov chains. We completely characterize the invariant measure of the discretized dynamics in terms of easily computable stationary measures of the chains.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 8 条
[1]  
BLANK ML, 1984, SOV MATH DOKL, V30, P449
[2]  
BOYARSKY A, 1986, J MATH ANAL APPL, V76, P483
[3]   SPATIAL DISCRETIZATION OF MAPPINGS [J].
DIAMOND, P ;
KLOEDEN, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 25 (06) :85-94
[4]   WHY COMPUTERS LIKE LEBESGUE MEASURE [J].
GORA, P ;
BOYARSKY, A .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 16 (04) :321-329
[5]  
Guckenheimer J., 1986, DYNAMICAL SYSTEMS BI
[6]   RANDOM PERTURBATIONS OF TRANSFORMATIONS OF AN INTERVAL [J].
KATOK, A ;
KIFER, Y .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 :193-237
[7]   SHADOWING BY COMPUTABLE CHAOTIC ORBITS [J].
PALMORE, JI ;
MCCAULEY, JL .
PHYSICS LETTERS A, 1987, 122 (08) :399-402
[8]  
[No title captured]