Chronic hypoxic exposure elicits pulmonary vascular remodeling and may alter normal pulmonary endothelial function. We examined the vasodilatory response to the receptor-mediated endothelium-dependent dilator arginine vasopressin (AVP), the nonreceptor-mediated endothelium-dependent dilator A-23187, and the nitric oxide (NO) donor sodium nitroprusside in lungs isolated from control or chronically hypoxic rats. Lungs were isolated from male Sprague-Dawley rats and perfused with a physiological saline solution containing 4% albumin. Arterial and venous pressures were monitored and microvascular pressure was estimated by double occlusion, allowing assessment of segmental resistances. After equilibration, lungs were constricted with the thromboxane mimetic U-46619. Upon development of a stable presser response, lungs were dilated with one of the above agents. A series of doses of AVP was administered to separate groups of lungs from control or chronically hypoxic rats. Lungs from chronically hypoxic rats exhibited an augmented dilatory response to AVP compared with control lungs, and this effect was due to enhanced dilation of precapillary segments. The total and segmental vasodilatory responses to A-23187 and sodium nitroprusside were not different between the two groups of lungs, suggesting that chronic hypoxia did not upregulate the enzyme NO synthase or enhance the vascular smooth muscle responsiveness to NO. Thus our data suggest that the augmented total and pulmonary arterial dilation to AVP after chronic hypoxia is most likely due to altered receptor-mediated processes of the hormone.