SIMILARITY SOLUTIONS OF THE KORTEWEG-DEVRIES EQUATION

被引:31
作者
BOITI, M
PEMPINELLI, F
机构
[1] Istituto di Fisica dell'Università, Lecce
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS | 1979年 / 51卷 / 01期
关键词
D O I
10.1007/BF02743697
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we find the general similarity solution for the Korteweg-de Vries equation in terms of the second transcendents of Painlevé. It is shown that the Bäcklund transformation for the similarity solutions reduces to an algebraic transformation on the derivatives of the starting solution. The Bäcklund transformation is expressed in the language of the second Painlevé transcendents, thus obtaining new interesting properties for these special functions. Some explicit classes of solutions of the Korteweg-de Vries equation are obtained and described. © 1979 Società Italiana di Fisica.
引用
收藏
页码:70 / 78
页数:9
相关论文
共 15 条
  • [1] DECAY OF CONTINUOUS SPECTRUM FOR SOLUTIONS OF KORTEWEG-DEVRIES EQUATION
    ABLOWITZ, MJ
    NEWELL, AC
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) : 1277 - 1284
  • [2] ABLOWITZ MJ, 1977, RES NOTES MATH, P9
  • [3] CALOGERO F, 1978, INVERSE SPECTRAL PRO
  • [4] SOLITONS - THEORY AND APPLICATION
    CERCIGNANI, C
    [J]. RIVISTA DEL NUOVO CIMENTO, 1977, 7 (04): : 429 - 469
  • [5] Davis HT., 1962, INTRO NONLINEAR DIFF
  • [6] Dubrovin B. A., 1976, RUSSIAN MATH SURVEYS, V31, P59, DOI [DOI 10.1070/RM1976V031N01ABEH001446, 10.1070/RM1976v031n01ABEH001446]
  • [7] Gambier B, 1909, ACTA MATH-DJURSHOLM, V33, P1
  • [8] KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .6. METHODS FOR EXACT SOLUTION
    GARDNER, CS
    GREENE, JM
    KRUSKAL, MD
    MIURA, RM
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) : 97 - 133
  • [9] METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION
    GARDNER, CS
    GREENE, JM
    KRUSKAL, MD
    MIURA, RM
    [J]. PHYSICAL REVIEW LETTERS, 1967, 19 (19) : 1095 - &
  • [10] Ince EL., 1956, ORDINARY DIFFERENTIA