QUANTUM GROUP-STRUCTURE OF QUANTUM TODA CONFORMAL FIELD-THEORIES .1.

被引:25
作者
HOLLOWOOD, T
MANSFIELD, P
机构
[1] Department of Theoretical Physics, Oxford, OX1 3NP
关键词
D O I
10.1016/0550-3213(90)90129-2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the quantization of non-affine Toda field theories in the light-cone and lattice formalisms. The vertex operators are constructed and their braiding is found to be a consequence of the fundamental commutation relations satisfied by the monodromy matrix. For certain values of the coupling, which correspond to the minimal models, the truncation of the operator algebra is closely tied to the quantum group structure. © 1990.
引用
收藏
页码:720 / 740
页数:21
相关论文
共 33 条
[1]   QUANTUM GROUP INTERPRETATION OF SOME CONFORMAL FIELD-THEORIES [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
PHYSICS LETTERS B, 1989, 220 (1-2) :142-152
[2]   HIDDEN QUANTUM SYMMETRIES IN RATIONAL CONFORMAL FIELD-THEORIES [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
NUCLEAR PHYSICS B, 1989, 319 (01) :155-186
[3]  
ANDREWS G, 1985, REGIONAL C SERIES MA, V66
[4]   EXTENDED CONFORMAL ALGEBRA AND THE YANG-BAXTER EQUATION [J].
BABELON, O .
PHYSICS LETTERS B, 1988, 215 (03) :523-529
[5]   SOLUTIONS OF THE FACTORIZATION EQUATIONS FROM TODA FIELD-THEORY [J].
BABELON, O ;
DEVEGA, HJ ;
VIALLET, CM .
NUCLEAR PHYSICS B, 1981, 190 (03) :542-552
[6]  
BAZHANOV VV, 1987, COMMUN MATH PHYS, V113, P113
[7]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[8]   QUANTUM SINE-GORDON EQUATION AS MASSIVE THIRRING MODEL [J].
COLEMAN, S .
PHYSICAL REVIEW D, 1975, 11 (08) :2088-2097
[9]   CONFORMALLY INVARIANT QUANTIZATION OF THE LIOUVILLE THEORY [J].
CURTRIGHT, TL ;
THORN, CB .
PHYSICAL REVIEW LETTERS, 1982, 48 (19) :1309-1313
[10]   YANG-BAXTER ALGEBRAS OF MONODROMY MATRICES IN INTEGRABLE QUANTUM-FIELD THEORIES [J].
DEVEGA, HJ ;
EICHENHERR, H ;
MAILLET, JM .
NUCLEAR PHYSICS B, 1984, 240 (03) :377-399