CONVERGENCE OF QUASI-NEWTON MATRICES GENERATED BY THE SYMMETRICAL RANK ONE UPDATE

被引:115
作者
CONN, AR
GOULD, NIM
TOINT, PL
机构
[1] RUTHERFORD APPLETON LAB,DIDCOT OX11 0QX,OXON,ENGLAND
[2] FAC UNIV NOTRE DAME PAIX,DEPT MATH,B-5000 NAMUR,BELGIUM
关键词
QUASI-NEWTON UPDATES; CONVERGENCE THEORY;
D O I
10.1007/BF01594934
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Quasi-Newton algorithms for unconstrained nonlinear minimization generate a sequence of matrices that can be considered as approximations of the objective function second derivatives. This paper gives conditions under which these approximations can be proved to converge globally to the true Hessian matrix, in the case where the Symmetric Rank One update formula is used. The rate of convergence is also examined and proven to be improving with the rate of convergence of the underlying iterates. The theory is confirmed by some numerical experiments that also show the convergence of the Hessian approximations to be substantially slower for other known quasi-Newton formulae.
引用
收藏
页码:177 / 195
页数:19
相关论文
共 16 条
[1]   CORRECTION [J].
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :764-767
[2]  
CONN AR, 1988, MATH COMPUT, V50, P399, DOI 10.1090/S0025-5718-1988-0929544-3
[3]   GLOBAL CONVERGENCE OF A CLASS OF TRUST REGION ALGORITHMS FOR OPTIMIZATION WITH SIMPLE BOUNDS [J].
CONN, AR ;
GOULD, NIM ;
TOINT, PL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (02) :433-460
[4]   QUASI-NEWTON METHODS, MOTIVATION AND THEORY [J].
DENNIS, JE ;
MORE, JJ .
SIAM REVIEW, 1977, 19 (01) :46-89
[5]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[6]  
Fiacco AV, 1990, NONLINEAR PROGRAMMIN
[7]  
Fletcher R., 2013, PRACTICAL METHODS OP
[8]  
GE RP, 1983, MATH PROGRAM, V27, P123, DOI 10.1007/BF02591941
[9]  
Gill P. E., 1981, PRACTICAL OPTIMIZATI
[10]   PARTITIONED VARIABLE-METRIC UPDATES FOR LARGE STRUCTURED OPTIMIZATION PROBLEMS [J].
GRIEWANK, A ;
TOINT, PL .
NUMERISCHE MATHEMATIK, 1982, 39 (01) :119-137