CHUA CIRCUIT - RIGOROUS RESULTS AND FUTURE-PROBLEMS

被引:126
作者
SHILNIKOV, LP
机构
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1994年 / 4卷 / 03期
关键词
D O I
10.1142/S021812749400037X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mathematical problems arising from the study of complex dynamics in Chua's circuit are discussed. An explanation of the extreme complexity of the structure of attractors of Chua's circuit is given. This explanation is based upon recent results on systems with homoclinic tangencies. A number of new dynamical phenomena is predicted for those generalizations of Chua's circuits which are described by multidimensional systems of ordinary differential equations.
引用
收藏
页码:489 / 519
页数:31
相关论文
共 75 条
[1]  
Afraimovich V.S., 1991, AM MATH SOC TRANSL, V149, P201
[2]  
AFRAIMOVICH VS, 1977, DOKL AKAD NAUK SSSR+, V234, P336
[3]  
AFRAIMOVICH VS, 1983, T MOSCOW MATH SOC, V44, P153
[4]  
AFRAIMOVICH VS, 1983, NONLINEAR DYNAMICS T, P1
[5]   ASYMPTOTIC CHAOS [J].
ARNEODO, A ;
COULLET, PH ;
SPIEGEL, EA ;
TRESSER, C .
PHYSICA D, 1985, 14 (03) :327-347
[6]   BIFURCATION SET IN A SYSTEM WITH HOMOCLINIC SADDLE CURVE [J].
BELYAKOV, LA .
MATHEMATICAL NOTES, 1980, 28 (5-6) :910-916
[7]   BIFURCATION OF SYSTEMS WITH HOMOCLINIC CURVE OF A SADDLE-FOCUS WITH SADDLE QUANTITY ZERO [J].
BELYAKOV, LA .
MATHEMATICAL NOTES, 1984, 36 (5-6) :838-843
[8]  
BELYAKOV LA, 1974, MAT ZAMETKI, V15, P336
[9]  
Bykov V. V., 1980, METHODS QUALITATIVE, P44
[10]  
Bykov V. V., 1989, SELECTA MATH SOV, V11, p[151, 375]