FUNDAMENTAL REPRESENTATIONS OF QUANTUM GROUPS AT ROOTS OF 1

被引:3
作者
CHARI, V [1 ]
PRESSLEY, A [1 ]
机构
[1] UNIV LONDON KINGS COLL,DEPT MATH,LONDON WC2R 2LS,ENGLAND
关键词
Mathematics Subject Classifications (1991): 17B37; 81R50;
D O I
10.1007/BF00398810
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To every finite-dimensional irreducible representation V of the quantum group U(E)(g underbar) where E is a primitive lth root of unity (l odd) and g underbar is a finite-dimensional complex simple Lie algebra, de Concini, Kac and Procesi have associated a conjugacy class C(V) in the adjoint group G of g underbar. We describe explicitly, when g underbar is of type A(n), B(n), C(n), or D4, the representations associated to the conjugacy classes of minimal positive dimension. We call such representations fundamental and prove that, for any conjugacy class, there is an associated representation which is contained in a tensor product of fundamental representations.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 7 条
[1]  
CHARI V, 1991, CR ACAD SCI I-MATH, V313, P429
[2]  
DATE E, 1990, CYCLIC REPRESENTATIO
[3]  
De Concini C., 1992, J AM MATH SOC, V5, P151, DOI DOI 10.2307/2152754
[4]  
DECONCINI C, 1990, PROG MATH, V92, P471
[5]  
DECONCINI C, 1992, SOME REMARKABLE DEGE
[6]   QUANTUM DEFORMATIONS OF CERTAIN SIMPLE MODULES OVER ENVELOPING-ALGEBRAS [J].
LUSZTIG, G .
ADVANCES IN MATHEMATICS, 1988, 70 (02) :237-249
[7]  
LUSZTIG G, 1990, GEOMETRIAE DEDICATA, V35, P89