THE CAPACITY OF THE ARBITRARILY VARYING CHANNEL REVISITED - POSITIVITY, CONSTRAINTS

被引:213
作者
CSISZAR, I [1 ]
NARAYAN, P [1 ]
机构
[1] UNIV MARYLAND,DEPT ELECT ENGN,COLLEGE PK,MD 20742
基金
美国国家科学基金会;
关键词
PROBABILITY - Random Processes;
D O I
10.1109/18.2627
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A well-known result of R. Ahlswede (1970) asserts that the deterministic code capacity of an arbitrarily varying channel (AVC), under the average-error-probability criterion, either equals its random code capacity or else is zero. A necessary and sufficient condition is identified for deciding between these alternatives, namely, the capacity is zero if and only if the AVC is symmetrizable. The capacity of the AVC is determined with constraints on the transmitted codewords as well as on the channel state sequences, and it is demonstrated that it may be positive but less than the corresponding random code capacity. A special case of the results resolves a weakened version of a fundamental problem of coding theory.
引用
收藏
页码:181 / 193
页数:13
相关论文
共 12 条
[1]   A NOTE ON EXISTENCE OF WEAK CAPACITY FOR CHANNELS WITH ARBITRARILY VARYING CHANNEL PROBABILITY FUNCTIONS AND ITS RELATION TO SHANNONS ZERO ERROR CAPACITY [J].
AHLSWEDE, R .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (03) :1027-+
[2]   ELIMINATION OF CORRELATION IN RANDOM CODES FOR ARBITRARILY VARYING CHANNELS [J].
AHLSWEDE, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 44 (02) :159-175
[3]   THE CAPACITIES OF CERTAIN CHANNEL CLASSES UNDER RANDOM CODING [J].
BLACKWELL, D ;
BREIMAN, L ;
THOMASIAN, AJ .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (03) :558-567
[4]   ON THE CAPACITY OF THE ARBITRARILY VARYING CHANNEL FOR MAXIMUM PROBABILITY OF ERROR [J].
CSISZAR, I ;
KORNER, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (01) :87-101
[5]   ARBITRARILY VARYING CHANNELS WITH CONSTRAINED INPUTS AND STATES [J].
CSISZAR, I ;
NARAYAN, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (01) :27-34
[6]  
CSISZAR I, 1977, IEEE INT S INFORMATI
[7]  
CSISZAR I, 1981, INFORMATION THEORY C
[8]  
Dobrushin R. L., 1975, PROBLEMY PEREDACHI I, V11, P3
[9]   EXPONENTIAL ERROR-BOUNDS FOR RANDOM CODES IN THE ARBITRARILY VARYING CHANNEL [J].
ERICSON, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (01) :42-48
[10]  
PINSKER MS, 1964, INFORMATION INFORMAT