STEIN METHOD FOR DIFFUSION APPROXIMATIONS

被引:139
作者
BARBOUR, AD
机构
[1] Institut für Angewandte Mathematik, Universität Zürich, Zürich, CH-8001
关键词
D O I
10.1007/BF01197887
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Stein's method of obtaining distributional approximations is developed in the context of functional approximation by the Wiener process and other Gaussian processes. An appropriate analogue of the one-dimensional Stein equation is derived, and the necessary properties of its solutions are established. The method is applied to the partial sums of stationary sequences and of dissociated arrays, to a process version of the Wald-Wolfowitz theorem and to the empirical distribution function. © 1990 Springer-Verlag.
引用
收藏
页码:297 / 322
页数:26
相关论文
共 14 条
[1]   2 MOMENTS SUFFICE FOR POISSON APPROXIMATIONS - THE CHEN-STEIN METHOD [J].
ARRATIA, R ;
GOLDSTEIN, L ;
GORDON, L .
ANNALS OF PROBABILITY, 1989, 17 (01) :9-25
[2]  
BARBOUR AD, IN PRESS POISSON APP
[3]  
Barbour AD., 1988, J APPL PROBAB, V25, P175, DOI 10.2307/3214155
[4]  
Billingsley P., 2013, CONVERGE PROBAB MEAS
[5]  
BOLTHAUSEN E, 1984, Z WAHRSCHEINLICHKEIT, V66, P379, DOI 10.1007/BF00533704
[6]   POISSON APPROXIMATION FOR DEPENDENT TRIALS [J].
CHEN, LHY .
ANNALS OF PROBABILITY, 1975, 3 (03) :534-545
[7]  
Ethier S.N., 2005, MARKOV PROCESSES CHA, Vsecond
[8]  
GOTZE F, 1989, IN PRESS ANN PROBAB
[9]  
Hall P., 1980, MARTINGALE LIMIT THE
[10]  
LAMPERTI J, 1966, PROBABILITY