A MULTIGRID METHOD FOR A PARAMETER DEPENDENT PROBLEM IN SOLID MECHANICS

被引:24
作者
BRAESS, D
BLOMER, C
机构
[1] Mathematisches Institut, Ruhr-Universität Bochum, Bochum
关键词
Subject Classification: AMS(MOS): 65N20; CR:; G; 1.8;
D O I
10.1007/BF01386441
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the finite element calculations of problems in solid mechanics the method of selected reduced integration (SRI) is frequently used to eliminate locking phenomena. Often SRI is equivalent to the application of a mixed method. When multigrid methods are applied, the formulation as a mixed method is by far superior. This is shown by an analysis of the Timoshenko beam. © 1990 Springer-Verlag.
引用
收藏
页码:747 / 761
页数:15
相关论文
共 20 条
[1]   DISCRETIZATION BY FINITE-ELEMENTS OF A MODEL PARAMETER DEPENDENT PROBLEM [J].
ARNOLD, DN .
NUMERISCHE MATHEMATIK, 1981, 37 (03) :405-421
[2]  
ARNOLD DN, IN PRESS SIAM J NUME
[3]   ANALYSIS OF MIXED METHODS USING MESH DEPENDENT NORMS [J].
BABUSKA, I ;
OSBORN, J ;
PITARANTA, J .
MATHEMATICS OF COMPUTATION, 1980, 35 (152) :1039-1062
[4]   SHARP ESTIMATES FOR MULTIGRID RATES OF CONVERGENCE WITH GENERAL SMOOTHING AND ACCELERATION [J].
BANK, RE ;
DOUGLAS, CC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (04) :617-633
[5]  
BANK RE, 1981, MATH COMPUT, V36, P35, DOI 10.1090/S0025-5718-1981-0595040-2
[6]  
BLOMER C, 1988, THESIS RUHR U
[7]   A NEW CONVERGENCE PROOF FOR THE MULTIGRID METHOD INCLUDING THE V-CYCLE [J].
BRAESS, D ;
HACKBUSCH, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (05) :967-975
[8]  
BRAESS D, UNPUB MULTIGRID METH
[9]  
Braess D., 1988, COMPUT MECH, V3, P321
[10]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129