SEQUENTIAL QUADRATIC-PROGRAMMING FOR CERTAIN PARAMETER-IDENTIFICATION PROBLEMS

被引:5
作者
KELLEY, CT
WRIGHT, SJ
机构
[1] ARGONNE NATL LAB,DIV MATH & COMP SCI,ARGONNE,IL 60439
[2] N CAROLINA STATE UNIV,DEPT MATH,RALEIGH,NC 27695
关键词
SEQUENTIAL QUADRATIC PROGRAMMING; PARAMETER IDENTIFICATION;
D O I
10.1007/BF01586941
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We analyze the method of sequential quadratic programming for equality constrained minimization problems in Hilbert spaces of functions, and for the discrete approximations of such problems in the context of an elliptic parameter identification problem. We show how the discretization can be constructed so as to preserve the convergence behavior of the iterates for the infinite dimensional problem in the finite dimensional approximations. We use the structure of the parameter identification problem to reduce the size of the linear system for the SQP step and verify nondegeneracy of the constraints.
引用
收藏
页码:281 / 305
页数:25
相关论文
共 18 条
[1]   A MESH-INDEPENDENCE PRINCIPLE FOR OPERATOR-EQUATIONS AND THEIR DISCRETIZATIONS [J].
ALLGOWER, EL ;
BOHMER, K ;
POTRA, FA ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (01) :160-169
[2]   A FAMILY OF DESCENT FUNCTIONS FOR CONSTRAINED OPTIMIZATION [J].
BOGGS, PT ;
TOLLE, JW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (06) :1146-1161
[3]  
COLONIUS F, 1986, J REINE ANGEWANDTE M, V270, P1
[4]  
Fletcher R., 1981, PRACTICAL METHODS OP
[5]   GLOBALLY CONVERGENT METHOD FOR NONLINEAR-PROGRAMMING [J].
HAN, SP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 22 (03) :297-309
[9]  
ITO K, 1987, 8737 LEFSCH CTR DYN
[10]  
ITO K, IN PRESS SIAM J CONT