ON THE COMPLEXITY OF APPROXIMATING THE MAXIMAL INSCRIBED ELLIPSOID FOR A POLYTOPE

被引:87
作者
KHACHIYAN, LG
TODD, MJ
机构
[1] CORNELL UNIV,SCH OPERAT RES & IND ENGN,E&TC BLDG,ITHACA,NY 14853
[2] RUTGERS UNIV,DEPT COMP SCI,NEW BRUNSWICK,NJ 08903
[3] RUSSIAN ACAD SCI,CTR COMP,MOSCOW,RUSSIA
关键词
MAXIMAL INSCRIBED ELLIPSOID; MAXIMAL INSCRIBED PARABOLOID; PATH-FOLLOWING NEWTON METHOD; COMPUTATIONAL COMPLEXITY;
D O I
10.1007/BF01582144
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We give a new polynomial bound on the complexity of approximating the maximal inscribed ellipsoid for a polytope.
引用
收藏
页码:137 / 159
页数:23
相关论文
共 14 条
[1]   AN ALGORITHM FOR SEPARATING PATTERNS BY ELLIPSOIDS [J].
BARNES, ER .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1982, 26 (06) :759-764
[2]  
Beckenbach E. F., 1961, INEQUALITIES
[3]  
Danzer L., 1957, ARCH MATH, V8, P214
[4]   ON THE COMPLEXITY OF 4 POLYHEDRAL SET CONTAINMENT PROBLEMS [J].
FREUND, RM ;
ORLIN, JB .
MATHEMATICAL PROGRAMMING, 1985, 33 (02) :139-145
[5]  
GOFFIN JL, 1988, TRENDS MATH OPTIMIZA, V84, P79
[6]  
John F., 1948, STUDIES ESSAYS PRESE, P187, DOI DOI 10.1007/978-3-0348-0439-4_9
[7]  
NESTEROV JE, 1989, SELF CONCORDANT FUNC
[8]   A POLYNOMIAL-TIME ALGORITHM, BASED ON NEWTON METHOD, FOR LINEAR-PROGRAMMING [J].
RENEGAR, J .
MATHEMATICAL PROGRAMMING, 1988, 40 (01) :59-93
[9]  
SONNEVEND G, 1988, ISNM, V84, P311
[10]  
Tarasov S., 1988, SOVIET MATH DOKLADY, V37, P226