THE FINITE-ELEMENT METHOD WITH LAGRANGE MULTIPLIERS ON THE BOUNDARY - CIRCUMVENTING THE BABUSKA-BREZZI CONDITION

被引:147
作者
BARBOSA, HJC [1 ]
HUGHES, TJR [1 ]
机构
[1] STANFORD UNIV,DIV APPL MECH,STANFORD,CA 94305
关键词
D O I
10.1016/0045-7825(91)90125-P
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to circumvent the Babuska-Brezzi condition in the finite element method with Lagrange multipliers on the boundary, least-squares-like terms are added to the classical Galerkin method. The additional terms involve integrals over element interiors and mesh-parameter dependent coefficients. The resulting formulations retain consistency and attain convergence for arbitrary polynomial interpolations which are continuous for the primal variable and which may be continuous or discontinuous for the Lagrange multiplier.
引用
收藏
页码:109 / 128
页数:20
相关论文
共 17 条
[1]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[2]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[3]  
BABUSKA I, 1972, MATH F FINITE ELEMEN
[4]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[5]  
Ciarlet P, 1979, FINITE ELEMENT METHO
[6]  
DOUGLAS J, 1989, MATH COMPUT, V52, P495, DOI 10.1090/S0025-5718-1989-0958871-X
[7]   A NEW FAMILY OF STABLE ELEMENTS FOR NEARLY INCOMPRESSIBLE ELASTICITY BASED ON A MIXED PETROV-GALERKIN FINITE-ELEMENT FORMULATION [J].
FRANCA, LP ;
HUGHES, TJR ;
LOULA, AFD ;
MIRANDA, I .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :123-141
[8]   2 CLASSES OF MIXED FINITE-ELEMENT METHODS [J].
FRANCA, LP ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 69 (01) :89-129
[9]   THE GALERKIN GRADIENT LEAST-SQUARES METHOD [J].
FRANCA, LP ;
DUTRADOCARMO, EG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1989, 74 (01) :41-54