QUANTUM FUNCTIONAL-INTEGRATION OF NON-EINSTEINIAN GRAVITY IN D=2

被引:35
作者
HAIDER, F
KUMMER, W
机构
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1994年 / 9卷 / 02期
关键词
D O I
10.1142/S0217751X94000108
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Complete integrability of R(2) gravity with dynamical torsion in d = 2 is also found in the quantum case, provided the light cone gauge is chosen. In our present work the path integral is derived from a covariant canonical and a canonical BRS approach. In the latter case and in that particular gauge all quantum effects - including Faddeev-Popov ghosts - vanish within the most simple topological setting which emphasizes local properties only. In the covariant canonical approach and with respect to a previous all-order perturbative analysis, the results are found to differ only by a counterterm.
引用
收藏
页码:207 / 220
页数:14
相关论文
共 34 条
[1]   NEW VARIABLES FOR CLASSICAL AND QUANTUM-GRAVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW LETTERS, 1986, 57 (18) :2244-2247
[2]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[3]   RELATIVISTIC S-MATRIX OF DYNAMICAL-SYSTEMS WITH BOSON AND FERMION CONSTRAINTS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1977, 69 (03) :309-312
[4]  
CHANGEMI C, 1992, PHYS REV LETT, V69, P233
[5]   ONE-LOOP DIVERGENCES OF EINSTEIN-YANG-MILLS SYSTEM [J].
DESER, S ;
TSAO, HS ;
VANNIEUWENHUIZE.P .
PHYSICAL REVIEW D, 1974, 10 (10) :3337-3342
[6]   SO(2,1)-INVARIANT QUANTIZATION OF THE LIOUVILLE THEORY [J].
DHOKER, E ;
FREEDMAN, DZ ;
JACKIW, R .
PHYSICAL REVIEW D, 1983, 28 (10) :2583-2598
[7]   HAMILTONIAN REDUCTION OF UNCONSTRAINED AND CONSTRAINED SYSTEMS [J].
FADDEEV, L ;
JACKIW, R .
PHYSICAL REVIEW LETTERS, 1988, 60 (17) :1692-1694
[8]  
Feynman R.P., 1965, QUANTUM MECHANICS PA, P1
[9]   QUANTIZATION OF RELATIVISTIC SYSTEMS WITH CONSTRAINTS [J].
FRADKIN, ES ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1975, B 55 (02) :224-226
[10]   QUANTIZATION OF RELATIVISTIC SYSTEMS WITH BOSON AND FERMION 1ST-CLASS AND 2ND-CLASS CONSTRAINTS [J].
FRADKIN, ES ;
FRADKINA, TE .
PHYSICS LETTERS B, 1978, 72 (03) :343-348