STATISTICAL-MECHANICS OF UNSUPERVISED STRUCTURE RECOGNITION

被引:37
作者
BIEHL, M
MIETZNER, A
机构
[1] Phys. Inst., Julius-Maximilians-Univ., Wurzburg
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 06期
关键词
D O I
10.1088/0305-4470/27/6/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A model of unsupervised learning is studied, where the environment provides N-dimensional input examples that are drawn from two overlapping Gaussian clouds. We consider the optimization of two different objective functions: the search for the direction of the largest variance in the data and the largest separating gap (stability) between clusters of examples respectively. By means of a statistical-mechanics analysis, we investigate how well the underlying structure is inferred from a set of examples. The performances of the learning algorithms depend crucially on the actual shape of the input distribution. A generic result is the existence of a critical number of examples needed for successful learning. The learning strategies are compared with methods different in spirit, such as the estimation of parameters in a model distribution and an information-theoretical approach.
引用
收藏
页码:1885 / 1897
页数:13
相关论文
共 21 条
  • [1] THE ADATRON - AN ADAPTIVE PERCEPTRON ALGORITHM
    ANLAUF, JK
    BIEHL, M
    [J]. EUROPHYSICS LETTERS, 1989, 10 (07): : 687 - 692
  • [2] SCALING LAWS IN LEARNING OF CLASSIFICATION TASKS
    BARKAI, N
    SEUNG, HS
    SOMPOLINSKY, H
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (20) : 3167 - 3170
  • [3] Becker S., 1991, International Journal of Neural Systems, V2, P17, DOI 10.1142/S0129065791000030
  • [4] A STOCHASTIC-MODEL OF NEURAL NETWORK FOR UNSUPERVISED LEARNING
    BENAIM, M
    [J]. EUROPHYSICS LETTERS, 1992, 19 (03): : 241 - 246
  • [5] STATISTICAL-MECHANICS OF UNSUPERVISED LEARNING
    BIEHL, M
    MIETZNER, A
    [J]. EUROPHYSICS LETTERS, 1993, 24 (05): : 421 - 426
  • [6] Duda R. O., 1973, PATTERN CLASSIFICATI, V3
  • [7] OPTIMAL STORAGE PROPERTIES OF NEURAL NETWORK MODELS
    GARDNER, E
    DERRIDA, B
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (01): : 271 - 284
  • [8] GARDNER E, 1988, PJ PHYS A, V21, P2578
  • [9] LEARNING AND RETRIEVAL IN ATTRACTOR NEURAL NETWORKS ABOVE SATURATION
    GRINIASTY, M
    GUTFREUND, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (03): : 715 - 734
  • [10] Hertz J., 1991, INTRO THEORY NEURAL