INTRACELLULAR AND EXTRACELLULAR CHANGES OF [CA2+] IN HYPOXIA AND ISCHEMIA IN RAT-BRAIN INVIVO

被引:343
作者
SILVER, IA
ERECINSKA, M
机构
[1] UNIV PENN, SCH MED, DEPT PHARMACOL, 39TH ST & HAMILTON WALK, PHILADELPHIA, PA 19104 USA
[2] UNIV BRISTOL, DEPT PATHOL, BRISTOL BS8 1TH, AVON, ENGLAND
[3] UNIV PENN, DEPT PHARMACOL, PHILADELPHIA, PA 19104 USA
[4] UNIV PENN, DEPT BIOCHEM & BIOPHYS, PHILADELPHIA, PA 19104 USA
关键词
D O I
10.1085/jgp.95.5.837
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Changes in intra- and extracellular free calcium concentration were evaluated with ion-selective microelectrodes during periods of anoxia and ischemia in three different regions of intact rat brain. Recordings stable for at least 2 min and in most cases for 4-6 min were chosen for analysis. Under normoxic conditions neuronal [Ca2+]i varied between <10-8 and 10-7 M from cell to cell but no systematic regional differences were observed. Elimination of O2 or interruption in blood flow caused, within 30-60 s, slight intracellular alkalinization followed by a small rise in [Ca2+]i a mild degree of hyperpolarization, and disappearance of electrical activity in the cortex, in that order. It is postulated that a decline in cellular energy levels, as manifested by H+ uptake associated with creatine phosphate hydrolysis, leads to an increase in [Ca2+]i which activates Ca2+-dependent K+ channels and consequently enhances gK. 2-4 min later there was a sudden, large rise in [K+]e, a fall in [Ca2+]i and a rapid elevation of [Ca2+]i. The magnitude of the latter was greatest in a high proportion of hippocampal neurons in area CA1 and some cortical cells, while it was smallest and relatively delayed in thalamic neurons. In the hippocampus area CA1 increases in [Ca2+]i to as much as 6-8 × 10-4 were observed; some of these could be reversed when O2 or blood flow were restored to normal. Pretreatment of animals with ketamine and MK-801, antagonists of excitatory amino acid transmitters, markedly slowed and decreased the rises in [[Ca2+]i The effects of the two agents were most pronounced in the hippocampus. It is concluded that the receptor-operated channels are largely responsible for Ca2+ entry into certain cells during hypoxia/ischemia. This pathway may be of primary importance in parts of the hippocampus and cortex, regions of the brain that are particularly vulnerable to O2 deprivation and which receive high glutamatergic input and have an abundance of excitatory amino acid receptors. © 1990, Rockefeller University Press., All rights reserved.
引用
收藏
页码:837 / 866
页数:30
相关论文
共 111 条
[1]   INTRACELLULAR CALCIUM-CONCENTRATION DURING HYPOXIA AND METABOLIC INHIBITION IN MAMMALIAN VENTRICULAR MUSCLE [J].
ALLEN, DG ;
ORCHARD, CH .
JOURNAL OF PHYSIOLOGY-LONDON, 1983, 339 (JUN) :107-122
[2]   CYTOSOLIC FREE CA-2+ IN SINGLE-RAT HEART-CELLS DURING ANOXIA AND REOXYGENATION [J].
ALLSHIRE, A ;
PIPER, HM ;
CUTHBERTSON, KSR ;
COBBOLD, PH .
BIOCHEMICAL JOURNAL, 1987, 244 (02) :381-385
[3]   FREE CALCIUM-IONS IN NEURONS OF HELIX-ASPERSA MEASURED WITH ION-SELECTIVE MICROELECTRODES [J].
ALVAREZLEEFMANS, FJ ;
RINK, TJ ;
TSIEN, RY .
JOURNAL OF PHYSIOLOGY-LONDON, 1981, 315 (JUN) :531-548
[4]   NEUTRAL CARRIER BASED HYDROGEN-ION SELECTIVE MICROELECTRODE FOR EXTRACELLULAR AND INTRACELLULAR STUDIES [J].
AMMANN, D ;
LANTER, F ;
STEINER, RA ;
SCHULTHESS, P ;
SHIJO, Y ;
SIMON, W .
ANALYTICAL CHEMISTRY, 1981, 53 (14) :2267-2269
[5]   THE DISSOCIATIVE ANESTHETICS, KETAMINE AND PHENCYCLIDINE, SELECTIVELY REDUCE EXCITATION OF CENTRAL MAMMALIAN NEURONS BY N-METHYL-ASPARTATE [J].
ANIS, NA ;
BERRY, SC ;
BURTON, NR ;
LODGE, D .
BRITISH JOURNAL OF PHARMACOLOGY, 1983, 79 (02) :565-575
[6]   CORTICAL EVOKED-POTENTIAL AND EXTRACELLULAR K+ AND H+ AT CRITICAL LEVELS OF BRAIN ISCHEMIA [J].
ASTRUP, J ;
SYMON, L ;
BRANSTON, NM ;
LASSEN, NA .
STROKE, 1977, 8 (01) :51-57
[7]   EFFECT OF HYPOGLYCEMIC ENCEPHALOPATHY UPON AMINO-ACIDS, HIGH-ENERGY PHOSPHATES, AND PHI IN THE RAT-BRAIN INVIVO - DETECTION BY SEQUENTIAL H-1 AND P-31 NMR-SPECTROSCOPY [J].
BEHAR, KL ;
DENHOLLANDER, JA ;
PETROFF, OAC ;
HETHERINGTON, HP ;
PRICHARD, JW ;
SHULMAN, RG .
JOURNAL OF NEUROCHEMISTRY, 1985, 44 (04) :1045-1055
[8]   ELEVATION OF THE EXTRACELLULAR CONCENTRATIONS OF GLUTAMATE AND ASPARTATE IN RAT HIPPOCAMPUS DURING TRANSIENT CEREBRAL-ISCHEMIA MONITORED BY INTRACEREBRAL MICRODIALYSIS [J].
BENVENISTE, H ;
DREJER, J ;
SCHOUSBOE, A ;
DIEMER, NH .
JOURNAL OF NEUROCHEMISTRY, 1984, 43 (05) :1369-1374
[9]   CALCIUM-ACTIVATED POTASSIUM CHANNELS [J].
BLATZ, AL ;
MAGLEBY, KL .
TRENDS IN NEUROSCIENCES, 1987, 10 (11) :463-467
[10]   CALCIUM-TRANSPORT AND BUFFERING IN NEURONS [J].
BLAUSTEIN, MP .
TRENDS IN NEUROSCIENCES, 1988, 11 (10) :438-443