LATTICE BASIS REDUCTION - IMPROVED PRACTICAL ALGORITHMS AND SOLVING SUBSET SUM PROBLEMS

被引:851
作者
SCHNORR, CP
EUCHNER, M
机构
[1] Fachbereich Mathematik/Informatik, Universität Frankfurt, Frankfurt am Main, 60054
关键词
LATTICE BASIS REDUCTION; LLL-REDUCTION; KORKIN-ZOLOTAREV REDUCTION; BLOCK KORKIN-ZOLOTAREV REDUCTION; SHORTEST LATTICE VECTOR PROBLEM; SUBSET SUM PROBLEM; LOW DENSITY SUBSET SUM ALGORITHM; KNAPSACK PROBLEM; STABLE REDUCTION ALGORITHM;
D O I
10.1007/BF01581144
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We report on improved practical algorithms for lattice basis reduction. We propose a practical floating point version of the L(3)-algorithm of Lenstra, Lenstra, Lovasz (1982). We present a variant of the L(3)-algorithm with ''deep insertions'' and a practical algorithm for block Korkin-Zolotarev reduction, a concept introduced by Schnorr (1987). Empirical tests show that the strongest of these algorithms solves almost all subset sum problems with up to 66 random weights of arbitrary bit length within at most a few hours on a UNISYS 6000/70 or within a couple of minutes on a SPARC1+ computer.
引用
收藏
页码:181 / 199
页数:19
相关论文
共 28 条
[1]  
Boas P., 1981, 8104 U AMST DEP MATH
[2]  
Brickell E. F., 1984, Advances in Cryptology. Proceedings of Crypto 83, P25
[3]   A KNAPSACK-TYPE PUBLIC KEY CRYPTOSYSTEM BASED ON ARITHMETIC IN FINITE-FIELDS [J].
CHOR, B ;
RIVEST, RL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :901-909
[4]  
Coster M.J., 1992, COMPUT COMPLEX, V2, P97
[5]  
EUCHNER M, 1991, PRAKTISCHE ALGORITHM
[6]   ON THE LAGARIAS-ODLYZKO ALGORITHM FOR THE SUBSET SUM PROBLEM [J].
FRIEZE, AM .
SIAM JOURNAL ON COMPUTING, 1986, 15 (02) :536-539
[7]  
Garey M.R., 1979, COMPUTERS INTRACTABI, V174
[8]   POLYNOMIAL-TIME ALGORITHMS FOR FINDING INTEGER RELATIONS AMONG REAL NUMBERS [J].
HASTAD, J ;
JUST, B ;
LAGARIAS, JC ;
SCHNORR, CP .
SIAM JOURNAL ON COMPUTING, 1989, 18 (05) :859-881
[9]  
JOUX A, 1991, LECT NOTES COMPUT SC, V529, P258
[10]   MINKOWSKI CONVEX BODY THEOREM AND INTEGER PROGRAMMING [J].
KANNAN, R .
MATHEMATICS OF OPERATIONS RESEARCH, 1987, 12 (03) :415-440