SENSITIVITY METHOD FOR BASIS INVERSE REPRESENTATION IN MULTISTAGE STOCHASTIC LINEAR-PROGRAMMING PROBLEMS

被引:4
作者
GONDZIO, J [1 ]
RUSZCZYNSKI, A [1 ]
机构
[1] WARSAW POLYTECH INST,INST AUTOMAT CONTROL,WARSAW,POLAND
关键词
LINEAR PROGRAMMING; STOCHASTIC PROGRAMMING; SIMPLEX METHOD;
D O I
10.1007/BF00940892
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A version of the simplex method for solving stochastic linear control problems is presented. The method uses a compact basis inverse representation that extensively exploits the original problem data and takes advantage of the supersparse structure of the problem. Computational experience indicates that the method is capable of solving large problems.
引用
收藏
页码:221 / 242
页数:22
相关论文
共 37 条
[1]   SIMPLEX METHOD OF LINEAR PROGRAMMING USING LU DECOMPOSITION [J].
BARTELS, RH ;
GOLUB, GH .
COMMUNICATIONS OF THE ACM, 1969, 12 (05) :266-&
[2]   DECOMPOSITION AND PARTITIONING METHODS FOR MULTISTAGE STOCHASTIC LINEAR-PROGRAMS [J].
BIRGE, JR .
OPERATIONS RESEARCH, 1985, 33 (05) :989-1007
[3]   MATRIX AUGMENTATION AND PARTITIONING IN UPDATING OF BASIS INVERSE [J].
BISSCHOP, J ;
MEERAUS, A .
MATHEMATICAL PROGRAMMING, 1977, 13 (03) :241-254
[4]   MATRIX AUGMENTATION AND STRUCTURE PRESERVATION IN LINEARLY CONSTRAINED CONTROL-PROBLEMS [J].
BISSCHOP, J ;
MEERAUS, A .
MATHEMATICAL PROGRAMMING, 1980, 18 (01) :7-15
[5]  
Cottle R. W., 1974, LINEAR ALGEBRA APPL, V8, P189
[6]   REORTHOGONALIZATION AND STABLE ALGORITHMS FOR UPDATING GRAM-SCHMIDT QR FACTORIZATION [J].
DANIEL, JW ;
GRAGG, WB ;
KAUFMAN, L ;
STEWART, GW .
MATHEMATICS OF COMPUTATION, 1976, 30 (136) :772-795
[7]   EVALUATION OF ORDERINGS FOR UNSYMMETRIC SPARSE MATRICES [J].
ERISMAN, AM ;
GRIMES, RG ;
LEWIS, JG ;
POOLE, WG ;
SIMON, HD .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (04) :600-624
[8]   STABLE MODIFICATION OF EXPLICIT LU FACTORS FOR SIMPLEX UPDATES [J].
FLETCHER, R ;
MATTHEWS, SPJ .
MATHEMATICAL PROGRAMMING, 1984, 30 (03) :267-284
[9]  
FLETCHER R, 1989, NA120 U DUNDD DEP MA
[10]  
Forrest J. J. H., 1972, MATH PROGRAM, V2, P263