SLOW-WAVE FINITE-DIFFERENCE BEAM-PROPAGATION METHOD

被引:51
作者
LIU, PL [1 ]
ZHAO, Q [1 ]
CHOA, FS [1 ]
机构
[1] UNIV MARYLAND, DEPT ELECT ENGN, CATONSVILLE, MD 21228 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/68.404005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
By invoking the slow-wave approximation, the wave equation resumes the form of the Fresnel equation, Codes developed previously for the paraxial beam propagation can be extended to simulate the backward reflection and diffraction at any angle. Results of planar waveguide gratings and a beveled corner bend are presented.
引用
收藏
页码:890 / 892
页数:3
相关论文
共 17 条
[1]   TIME-DOMAIN WAVE-PROPAGATION IN OPTICAL STRUCTURES [J].
CHAN, RY ;
LIU, JM .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1994, 6 (08) :1001-1003
[2]   A FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR THE DESIGN AND ANALYSIS OF GUIDED-WAVE OPTICAL STRUCTURES [J].
CHU, ST ;
CHAUDHURI, SK .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1989, 7 (12) :2033-2038
[3]   AN ASSESSMENT OF FINITE-DIFFERENCE BEAM PROPAGATION METHOD [J].
CHUNG, Y ;
DAGLI, N .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (08) :1335-1339
[4]  
Danielsen P., 1983, Journal of Optical Communications, V4, P94, DOI 10.1515/JOC.1983.4.3.94
[5]   LIGHT-PROPAGATION IN GRADED-INDEX OPTICAL FIBERS [J].
FEIT, MD ;
FLECK, JA .
APPLIED OPTICS, 1978, 17 (24) :3990-3998
[6]   NUMERICAL-SIMULATION OF REFLECTING STRUCTURES BY SOLUTION OF THE 2-DIMENSIONAL HELMHOLTZ-EQUATION [J].
HADLEY, GR .
OPTICS LETTERS, 1994, 19 (02) :84-86
[7]   ANALYSIS OF 2ND-ORDER GRATINGS [J].
HARDY, A ;
WELCH, DF ;
STREIFER, W .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1989, 25 (10) :2096-2105
[8]   A FINITE-DIFFERENCE VECTOR BEAM PROPAGATION METHOD FOR 3-DIMENSIONAL WAVE-GUIDE STRUCTURES [J].
HUANG, WP ;
XU, CL ;
CHAUDHURI, SK .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1992, 4 (02) :148-151
[9]   A SEMIVECTORIAL FINITE-DIFFERENCE TIME-DOMAIN METHOD [J].
HUANG, WP ;
CHU, ST ;
CHAUDHURI, SK .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (09) :803-806
[10]  
LARISSE C, 1988, ELECTRON LETT, V24, P674