Physiological regulation and functional significance of shade avoidance responses to neighbors

被引:68
作者
Keuskamp, Diederik H. [1 ]
Sasidharan, Rashmi [1 ]
Pierik, Ronald [1 ]
机构
[1] Univ Utrecht, Plant Ecophysiol, Inst Environm Biol, Utrecht, Netherlands
关键词
competition; shade avoidance; hormones; cell wall; adaptive plasticity; photoreceptor; light;
D O I
10.4161/psb.5.6.11401
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants growing in dense vegetations compete with their neighbors for resources such as water, nutrients and light. The competition for light has been particularly well studied, both for its fitness consequences as well as the adaptive behaviors that plants display to win the battle for light interception. Aboveground, plants detect their competitors through photosensory cues, notably the red: far-red light ratio (R:FR). The R: FR is a very reliable indicator of future competition as it decreases in a plant-specific manner through red light absorption for photosynthesis and is sensed with the phytochrome photoreceptors. In addition, also blue light depletion is perceived for neighbor detection. As a response to these light signals plants display a suite of phenotypic traits defined as the shade avoidance syndrome (SAS). The SAS helps to position the photosynthesizing leaves in the higher zones of a canopy where light conditions are more favorable. In this review we will discuss the physiological control mechanisms through which the photosensory signals are transduced into the adaptive phenotypic responses that make up the SAS. Using this mechanistic knowledge as a starting point, we will discuss how the SAS functions in the context of the complex multi-facetted environments, which plants usually grow in.
引用
收藏
页码:655 / 662
页数:8
相关论文
共 115 条
[1]   Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function [J].
Achard, P ;
Vriezen, WH ;
Van Der Straeten, D ;
Harberd, NP .
PLANT CELL, 2003, 15 (12) :2816-2825
[2]   DELLAs contribute to plant photomorphogenesis [J].
Achard, Patrick ;
Liao, Lili ;
Jiang, Caifu ;
Desnos, Thierry ;
Bartlett, Joanne ;
Fu, Xiangdong ;
Harberd, Nicholas P. .
PLANT PHYSIOLOGY, 2007, 143 (03) :1163-1172
[3]   HY4 GENE OF A-THALIANA ENCODES A PROTEIN WITH CHARACTERISTICS OF A BLUE-LIGHT PHOTORECEPTOR [J].
AHMAD, M ;
CASHMORE, AR .
NATURE, 1993, 366 (6451) :162-166
[4]   Red/far-red light mediated stem elongation and anthocyanin accumulation in Stellaria longipes:: differential response of alpine and prairie ecotypes [J].
Alokam, S ;
Chinnappa, CC ;
Reid, DM .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 2002, 80 (01) :72-81
[5]   DELLA proteins: integrators of multiple plant growth regulatory inputs? [J].
Alvey, L ;
Harberd, NP .
PHYSIOLOGIA PLANTARUM, 2005, 123 (02) :153-160
[6]   Flooding stress: Acclimations and genetic diversity [J].
Bailey-Serres, J. ;
Voesenek, L. A. C. J. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 :313-339
[7]   The role of root exudates in rhizosphere interations with plants and other organisms [J].
Bais, Harsh P. ;
Weir, Tiffany L. ;
Perry, Laura G. ;
Gilroy, Simon ;
Vivanco, Jorge M. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2006, 57 :233-266
[8]   RESPONSES OF LIGHT-GROWN WILD-TYPE AND LONG-HYPOCOTYL MUTANT CUCUMBER SEEDLINGS TO NATURAL AND SIMULATED SHADE LIGHT [J].
BALLARE, CL ;
CASAL, JJ ;
KENDRICK, RE .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1991, 54 (05) :819-826
[9]   Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses [J].
Blakeslee, JJ ;
Bandyopadhyay, A ;
Peer, WA ;
Makam, SN ;
Murphy, AS .
PLANT PHYSIOLOGY, 2004, 134 (01) :28-31
[10]   A REVERSIBLE PHOTOREACTION CONTROLLING SEED GERMINATION [J].
BORTHWICK, HA ;
HENDRICKS, SB ;
PARKER, MW ;
TOOLE, EH ;
TOOLE, VK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1952, 38 (08) :662-666