TIGHT UPPER AND LOWER BOUNDS ON PERTURBATION COEFFICIENTS FOR ANHARMONIC OSCILLATORS

被引:2
作者
BENDER, CM [1 ]
LING, KM [1 ]
机构
[1] WASHINGTON UNIV,DEPT ELECT ENGN,ST LOUIS,MO 63130
来源
PHYSICAL REVIEW D | 1979年 / 19卷 / 12期
关键词
D O I
10.1103/PhysRevD.19.3808
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An extremely simple argument is given which provides tight upper and lower bounds on the growth of the perturbation coefficients in the expansion of the ground-state energy for the anharmonic oscillator [-d2dx2+x24+gx2K2K-E(g)]y(x)=0, y(±)=0. We prove that if E(g)∼12-(-g)nAn, then for large n, An grows like Cn[n(K-1)]!, where [K(K-1)]K-1≤C≤2K[K(K-1)]K-1. © 1979 The American Physical Society.
引用
收藏
页码:3808 / 3810
页数:3
相关论文
共 6 条
[1]   LARGE-ORDER BEHAVIOR OF PERTURBATION THEORY [J].
BENDER, CM ;
WU, TS .
PHYSICAL REVIEW LETTERS, 1971, 27 (07) :461-&
[2]   STATISTICAL-ANALYSIS OF FEYNMAN DIAGRAMS [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW LETTERS, 1976, 37 (03) :117-120
[3]   PERTURBATION-THEORY IN LARGE ORDER [J].
BENDER, CM .
ADVANCES IN MATHEMATICS, 1978, 30 (03) :250-267
[4]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[5]   ASYMPTOTIC GRAPH COUNTING TECHNIQUES IN PSI-2N FIELD-THEORY [J].
BENDER, CM ;
CASWELL, WE .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (12) :2579-2586
[6]  
Jaffe A., 1965, COMMUN MATH PHYS, V1, P127