HETEROCLINIC BIFURCATIONS AND INVARIANT-MANIFOLDS IN ROCKING BLOCK DYNAMICS

被引:21
作者
BRUHN, B
KOCH, BP
机构
[1] Fachbereich Physik, Ernst-Moritz-Arndt-Universität, Greifswald
[2] Fachbereich Physik, Universität Greifswald, Domstraße 10a
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 1991年 / 46卷 / 06期
关键词
EARTHQUAKE DYNAMICS; HETEROCLINIC BIFURCATIONS; MELNIKOV METHOD; CHAOS;
D O I
10.1515/zna-1991-0603
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple model of rigid block motion under the influence of external perturbations is discussed. For periodic forcings we prove the existence of Smale horseshoe chaos in the dynamics. For slender blocks a heteroclinic bifurcation condition is calculated exactly, i.e. without using perturbation methods. That means that our results are valid for arbitrary excitation amplitudes. Furthermore, analytical formulas for the first pieces of the stable and unstable manifolds are derived not only for periodically but also for transiently driven systems. In the case of small excitation and damping the Melnikov method is used to treat the full nonlinear problem.
引用
收藏
页码:481 / 490
页数:10
相关论文
共 32 条
[1]  
ASLAM M, 1980, J STRUCT DIV-ASCE, V106, P377
[2]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[3]   SCALING STRUCTURE OF STRANGE ATTRACTORS [J].
AUERBACH, D ;
OSHAUGHNESSY, B ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 37 (06) :2234-2236
[4]   HETEROCLINIC ORBITS AND CHAOTIC DYNAMICS IN PLANAR FLUID-FLOWS [J].
BERTOZZI, AL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (06) :1271-1294
[5]   CHAOS AND ORDER IN WEAKLY COUPLED SYSTEMS OF NONLINEAR OSCILLATORS [J].
BRUHN, B .
PHYSICA SCRIPTA, 1987, 35 (01) :7-12
[6]   BIFURCATIONS OF SUBHARMONICS [J].
CHOW, SN ;
SHAW, SW .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 65 (03) :304-320
[7]  
Gavrilov N.K., 1972, MATH USSR SB, V17, P467
[8]   BASIN BOUNDARY METAMORPHOSES - CHANGES IN ACCESSIBLE BOUNDARY ORBITS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1987, 24 (1-3) :243-262
[9]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[10]   ORGANIZATION OF CHAOS [J].
GUNARATNE, GH ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 59 (13) :1377-1380