INORGANIC-PHOSPHATE ADDED EXOGENOUSLY OR RELEASED FROM BETA-GLYCEROPHOSPHATE INITIATES MINERALIZATION OF OSTEOID NODULES INVITRO

被引:160
作者
BELLOWS, CG
HEERSCHE, JNM
AUBIN, JE
机构
[1] M.R.C. Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Toronto, Ont.
来源
BONE AND MINERAL | 1992年 / 17卷 / 01期
关键词
BETA-GLYCEROPHOSPHATE; INORGANIC PHOSPHATE; MINERALIZATION; BONE NODULES; ALKALINE PHOSPHATASE;
D O I
10.1016/0169-6009(92)90707-K
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Rat calvaria (RC) cells grown in medium containing ascorbic acid form nodules of osteoid and cells. When 10 mM beta-Glycerophosphate (beta-GP) is added, the osteoid mineralizes in two phases: an initiation phase that is dependent upon alkaline phosphatase activity and a progression phase that proceeds independently of the activity of alkaline phosphatase and does not require added beta-GP (Bellows et al., Bone Miner 1991;14:27-40). The present experiments were performed to determine whether beta-GP is converted to inorganic phosphate (Pi) during the initiation phase of the mineralization process and whether increased Pi can replace beta-GP in the initiation phase. Measurements of Pi concentrations in the culture medium showed that during the first 8 h of the initiation phase of mineralization, 10 mM beta-GP was rapidly degraded resulting in Pi concentrations of 9-10 mM. The production rate of Pi from beta-GP was linear (r = 0.996) and the alkaline phosphatase activity in the same cultures indicated a potential for conversion of beta-GP to Pi that was greater than the actual conversion rate. The addition of 2-5 mM Pi in the absence of beta-GP also initiated mineralization. Mineralization initiated by either beta-GP or Pi progressed in the absence of added beta-GP or Pi. 100-mu-M Levamisole inhibited the initiation of beta-GP-induced mineralization and the conversion of beta-GP to Pi, but did not affect Pi-induced initiation of mineralization. The addition of 1-5 mM Pi to cultures in which mineralization had been initiated by 10 mM beta-GP had no significant effect on the progression phase of mineralization. Neither beta-BP nor Pi initiated Ca-45 uptake in cultures without nodules (RC population I) and the histological appearance of the mineralized tissue in either phosphate source appeared identical. The present experiments show that beta-GP is rapidly and virtually completely degraded to Pi during the initiation phase of mineralization and that the addition of increased concentrations of Pi can replace beta-GP in the initiation phase of mineralization in the absence of non-specific Ca-45 uptake or apparent cellular toxicity.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 35 条
[1]   FACTORS THAT PROMOTE PROGRESSIVE DEVELOPMENT OF THE OSTEOBLAST PHENOTYPE IN CULTURED FETAL-RAT CALVARIA CELLS [J].
ARONOW, MA ;
GERSTENFELD, LC ;
OWEN, TA ;
TASSINARI, MS ;
STEIN, GS ;
LIAN, JB .
JOURNAL OF CELLULAR PHYSIOLOGY, 1990, 143 (02) :213-221
[2]   VECTORIAL SEQUENCE OF MINERALIZATION IN THE TURKEY LEG TENDON DETERMINED BY ELECTRON-MICROSCOPIC IMAGING [J].
ARSENAULT, AL ;
FRANKLAND, BW ;
OTTENSMEYER, FP .
CALCIFIED TISSUE INTERNATIONAL, 1991, 48 (01) :46-55
[3]  
BELLOWS C G, 1990, Journal of Bone and Mineral Research, V5, pS101
[4]   MINERALIZED BONE NODULES FORMED INVITRO FROM ENZYMATICALLY RELEASED RAT CALVARIA CELL-POPULATIONS [J].
BELLOWS, CG ;
AUBIN, JE ;
HEERSCHE, JNM ;
ANTOSZ, ME .
CALCIFIED TISSUE INTERNATIONAL, 1986, 38 (03) :143-154
[5]   INITIATION AND PROGRESSION OF MINERALIZATION OF BONE NODULES FORMED INVITRO - THE ROLE OF ALKALINE-PHOSPHATASE AND ORGANIC PHOSPHATE [J].
BELLOWS, CG ;
AUBIN, JE ;
HEERSCHE, JNM .
BONE AND MINERAL, 1991, 14 (01) :27-40
[6]   PHYSIOLOGICAL CONCENTRATIONS OF GLUCOCORTICOIDS STIMULATE FORMATION OF BONE NODULES FROM ISOLATED RAT CALVARIA CELLS-INVITRO [J].
BELLOWS, CG ;
AUBIN, JE ;
HEERSCHE, JNM .
ENDOCRINOLOGY, 1987, 121 (06) :1985-1992
[7]   EXPRESSION OF THE CHONDROGENIC PHENOTYPE BY MINERALIZING CULTURES OF EMBRYONIC CHICK CALVARIAL BONE-CELLS [J].
BERRY, L ;
SHUTTLEWORTH, CA .
BONE AND MINERAL, 1989, 7 (01) :31-45
[8]   ULTRASTRUCTURAL ANALYSIS OF BONE NODULES FORMED INVITRO BY ISOLATED FETAL-RAT CALVARIA CELLS [J].
BHARGAVA, U ;
BARLEV, M ;
BELLOWS, CG ;
AUBIN, JE .
BONE, 1988, 9 (03) :155-163
[9]  
DEBERNARD B, 1985, CHEM BIOL MINERALIZE, P142
[10]   OSTEOBLASTS ISOLATED FROM MOUSE CALVARIA INITIATE MATRIX MINERALIZATION IN CULTURE [J].
ECAROTCHARRIER, B ;
GLORIEUX, FH ;
VANDERREST, M ;
PEREIRA, G .
JOURNAL OF CELL BIOLOGY, 1983, 96 (03) :639-643