ON THE SYMMETRICAL AND UNSYMMETRIC SOLUTION SET OF INTERVAL SYSTEMS

被引:16
作者
ALEFELD, G [1 ]
MAYER, G [1 ]
机构
[1] UNIV ROSTOCK,FACHBEREICH MATH,D-18051 ROSTOCK,GERMANY
关键词
LINEAR INTERVAL EQUATIONS; UNSYMMETRIC SOLUTION SET; ENCLOSURES FOR THE SOLUTION SET OF LINEAR INTERVAL SYSTEMS; SYMMETRICAL LINEAR SYSTEMS; SYMMETRICAL SOLUTION SET; INTERVAL CHOLESKY METHOD; CRITERIA OF FEASIBILITY FOR THE INTERVAL CHOLESKY METHOD;
D O I
10.1137/S0895479894268075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the solution set S of red linear systems Ax = b with the n x n coefficient matrix A varying between a lower bound A and an upper bound ($) over bar A, and with b similarly varying between b, ($) over bar b. First we list some properties on the shape of S if all matrices A are nonsingular. Then we restrict A to be nonsingular and symmetric deriving a complete description for the boundary of the corresponding symmetric solution set S-sym in the 2 x 2 case. Finally we derive a new criterion for the feasibility of the Cholesky method with which bounds for S-sym can be found.
引用
收藏
页码:1223 / 1240
页数:18
相关论文
共 11 条
[1]   THE CHOLESKY METHOD FOR INTERVAL DATA [J].
ALEFELD, G ;
MAYER, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 194 :161-182
[2]  
Alefeld G., 1983, INTRO INTERVAL COMPU
[3]  
Beeck H., 1972, Computing, V10, P231, DOI 10.1007/BF02316910
[4]  
HARTFIEL DJ, 1980, NUMER MATH, V35, P355, DOI 10.1007/BF01396417
[5]   INTERVAL LINEAR-SYSTEMS WITH SYMMETRICAL MATRICES, SKEW-SYMMETRICAL MATRICES AND DEPENDENCIES IN THE RIGHT HAND SIDE [J].
JANSSON, C .
COMPUTING, 1991, 46 (03) :265-274
[6]  
Neumaier A., 1990, INTERVAL METHODS SYS
[7]  
Oettli W., 1964, NUMER MATH, V6, P405
[8]  
ROHN J, 1989, BIT, V30, P161
[9]  
ROHN J, 1984, FREIBURGER INTERVALL, V84, P33
[10]  
Rump S. M., 1992, Computer Arithmetic and Enclosure Methods. Proceedings of the Third International IMACS-GAMM Symposium on Computer Arithmetic and Scientific Computing (SCAN-91), P339