2-DIMENSIONAL DISCRETE HILBERT TRANSFORM AND COMPUTATIONAL COMPLEXITY ASPECTS IN ITS IMPLEMENTATION

被引:14
作者
BOSE, NK [1 ]
PRABHU, KA [1 ]
机构
[1] UNIV PITTSBURGH,DEPT MATH,PITTSBURGH,PA 15261
来源
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING | 1979年 / 27卷 / 04期
关键词
D O I
10.1109/TASSP.1979.1163261
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
It is first shown that the impulse response operator for a two-dimensional discrete Hilbert transform (DHT), although not by itself sum-separable, becomes so after appropriate classification. Subsequently, it is proved that the multiplicative complexity of computation of a two-dimensional DHT is not greater than twice the sum of multiplicative complexities of two one-dimensional DHT's. Finally, the consequences of Winograd's algebraical computational complexity theory on the problem considered here are discussed. Copyright © 1979 by The Institute of Electrical and Electronics Engineers, Inc.
引用
收藏
页码:356 / 360
页数:5
相关论文
共 11 条
[1]  
BONANZIGO F, 1972, IEEE T AUDIO ELECTRO, V20, P99
[2]   PROBLEMS IN STABILIZATION OF MULTIDIMENSIONAL FILTERS VIA HILBERT TRANSFORM [J].
BOSE, NK .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1974, GE12 (04) :146-147
[3]   MATRIX FORMULATION OF DISCRETE HILBERT TRANSFORM [J].
BURRIS, FE .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1975, 22 (10) :836-838
[4]  
Dutta Roy S. C., 1976, Proceedings of the IEEE, V64, DOI 10.1109/PROC.1976.10341
[5]  
DUTTAROY SC, 1978, IEEE T ACOUST SPEECH, V26, P465
[6]   2-DIMENSIONAL STABILITY AND ORTHOGONAL POLYNOMIALS ON HYPERCIRCLE [J].
GENIN, YV ;
KAMP, YG .
PROCEEDINGS OF THE IEEE, 1977, 65 (06) :873-881
[7]  
MURRAY J, 1978, IEEE T CIRCUITS SYST, V25, P585
[8]  
Pratt W. K., 1978, DIGITAL IMAGE PROCES
[9]   STABILIZATION OF TWO-DIMENSIONAL RECURSIVE FILTERS VIA DISCRETE HILBERT TRANSFORM [J].
READ, RR ;
TREITEL, S .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1973, GE11 (03) :153-160
[10]  
WINOGRAD S, 1978, AUG REG C ALG COMP C