STRUCTURAL BASIS FOR BROAD SPECIFICITY IN ALPHA-LYTIC PROTEASE MUTANTS

被引:55
作者
BONE, R
FUJISHIGE, A
KETTNER, CA
AGARD, DA
机构
[1] UNIV CALIF SAN FRANCISCO,DEPT BIOCHEM & BIOPHYS,SAN FRANCISCO,CA 94143
[2] DUPONT CO,DUPONT EXPTL STN,WILMINGTON,DE 19880
[3] UNIV CALIF SAN FRANCISCO,DEPT PHARMACEUT CHEM,SAN FRANCISCO,CA 94143
[4] UNIV CALIF SAN FRANCISCO,HOWARD HUGHES MED INST,SAN FRANCISCO,CA 94143
关键词
D O I
10.1021/bi00107a005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Binding pocket mutants of a-lytic protease (Met 192 --> Ala and Met 213 --> Ala) have been constructed recently in an effort to create a protease specific for Met just prior to the scissile bond. Instead, mutation resulted in proteases with extraordinarily broad specificity profiles and high activity [Bone, R., Silen, J. L., & Agard, D. A. (1989) Nature 339, 191-195]. To understand the structural basis for the unexpected specificity profiles of these mutants, high-resolution X-ray crystal structures have been determined for complexes of each mutant with a series of systematically varying peptidylboronic acids. These inhibitory analogues of high-energy reaction intermediates provide models for how substrates with different side chains interact with the enzyme during the transition state. Fifteen structures have been analyzed qualitatively and quantitatively with respect to enzyme-inhibitor hydrogen-bond lengths, buried hydrophobic surface area, unfilled cavity volume, and the magnitude of inhibitor accommodating conformational adjustments (particularly in the region of another binding pocket residue, Val 217A). Comparison of these four parameters with the K(i) of each inhibitor and the k(cat) and K(m) of the analogous substrates indicates that while no single structural parameter consistently correlates with activity or inhibition, the observed data can be understood as a combination of effects. Furthermore, the relative contribution of each term differs for the three enzymes, reflecting the altered conformational energetics of each mutant. From the extensive structural analysis, it is clear that enzyme flexibility, especially in the region of Val 217A, is primarily responsible for the exceptionally broad specificity observed in either mutant. Taken together, the observed patterns of substrate specificity can be understood to arise directly from interactions between the substrate and the residues lining the specificity pocket and indirectly from interactions between peripheral regions of the protein and the active-site region that serve to modulate active-site flexibility.
引用
收藏
页码:10388 / 10398
页数:11
相关论文
共 51 条
[1]  
[Anonymous], 1960, HYDROGEN BOND
[2]  
[Anonymous], 1985, ENZYME STRUCTURE MEC
[3]   N-15 NMR-SPECTROSCOPY OF THE CATALYTIC-TRIAD HISTIDINE OF A SERINE PROTEASE IN PEPTIDE BORONIC ACID INHIBITOR COMPLEXES [J].
BACHOVCHIN, WW ;
WONG, WYL ;
FARRJONES, S ;
SHENVI, AB ;
KETTNER, CA .
BIOCHEMISTRY, 1988, 27 (20) :7689-7697
[4]   PHOSPHONAMIDATES AS TRANSITION-STATE ANALOG INHIBITORS OF THERMOLYSIN [J].
BARTLETT, PA ;
MARLOWE, CK .
BIOCHEMISTRY, 1983, 22 (20) :4618-4624
[5]  
Bevington PR, 1969, DATA REDUCTION ERROR, P92
[6]   STRUCTURAL PLASTICITY BROADENS THE SPECIFICITY OF AN ENGINEERED PROTEASE [J].
BONE, R ;
SILEN, JL ;
AGARD, DA .
NATURE, 1989, 339 (6221) :191-195
[7]   SERINE PROTEASE MECHANISM - STRUCTURE OF AN INHIBITORY COMPLEX OF ALPHA-LYTIC PROTEASE AND A TIGHTLY BOUND PEPTIDE BORONIC ACID [J].
BONE, R ;
SHENVI, AB ;
KETTNER, CA ;
AGARD, DA .
BIOCHEMISTRY, 1987, 26 (24) :7609-7614
[8]   STRUCTURAL-ANALYSIS OF SPECIFICITY - ALPHA-LYTIC PROTEASE COMPLEXES WITH ANALOGS OF REACTION INTERMEDIATES [J].
BONE, R ;
FRANK, D ;
KETTNER, CA ;
AGARD, DA .
BIOCHEMISTRY, 1989, 28 (19) :7600-7609
[9]   CRYSTAL-STRUCTURES OF ALPHA-LYTIC PROTEASE COMPLEXES WITH IRREVERSIBLY BOUND PHOSPHONATE ESTERS [J].
BONE, R ;
SAMPSON, NS ;
BARTLETT, PA ;
AGARD, DA .
BIOCHEMISTRY, 1991, 30 (08) :2263-2272
[10]   INHIBITION OF CHYMOTRYPSIN BY PEPTIDYL TRIFLUOROMETHYL KETONES - DETERMINANTS OF SLOW-BINDING KINETICS [J].
BRADY, K ;
ABELES, RH .
BIOCHEMISTRY, 1990, 29 (33) :7608-7617