GENERALIZED DEDEKIND DOMAINS AND THEIR INJECTIVE-MODULES

被引:23
作者
FACCHINI, A
机构
[1] Dipartimento di Matematica e Informatica, Università di Udine, I-33100 Udine
关键词
D O I
10.1016/0022-4049(94)90030-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for a commutative integral domain R the following conditions are equivalent: (a) R is a Prufer domain with no non-zero idempotent prime ideals; (b) there is a one to one correspondence between prime ideals in R and isomorphism classes of indecomposable injective R-modules, and every indecomposable injective R-module, viewed as a module over its endomorphism ring, is uniserial. This result allows us to study and describe injective modules over generalized Dedekind domains. Furthermore, we show that a partially ordered set is order isomorphic to the spectrum of a generalized Dedekind domain if and only if it is a Noetherian tree with a least element.
引用
收藏
页码:159 / 173
页数:15
相关论文
共 19 条
[1]   PIECEWISE NOETHERIAN-RINGS [J].
BEACHY, JA ;
WEAKLEY, WD .
COMMUNICATIONS IN ALGEBRA, 1984, 12 (21-2) :2679-2706
[2]   ALMOST MAXIMAL INTEGRAL DOMAINS AND FINITELY GENERATED MODULES [J].
BRANDAL, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 183 (SEP) :203-222
[3]   RELATIVE INJECTIVITY AND PURE-INJECTIVE MODULES OVER PRUFER-RINGS [J].
FACCHINI, A .
JOURNAL OF ALGEBRA, 1987, 110 (02) :380-406
[4]   TORSION-FREE COVERS AND PURE-INJECTIVE ENVELOPES OVER VALUATION DOMAINS [J].
FACCHINI, A .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 52 (1-2) :129-139
[5]  
FONTANA M, IN PRESS J ALGEBRA
[6]  
GILL DT, 1971, J LOND MATH SOC, V4, P140
[7]  
Gilmer R., 1992, MULTIPLICATIVE IDEAL, V90
[8]  
GORDON R, 1973, MEM AM MATH SOC, V133
[9]   PRIME IDEAL STRUCTURE IN COMMUTATIVE RINGS [J].
HOCHSTER, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 142 (AUG) :43-&
[10]   SPECTRUM OF A RING AS A PARTIALLY ORDERED SET [J].
LEWIS, WJ .
JOURNAL OF ALGEBRA, 1973, 25 (03) :419-434