FRACTIONAL SUPERSYMMETRY AND QUANTUM-MECHANICS

被引:36
作者
DURAND, S
机构
[1] Department of Physics, McGill University, Montréal, Que. H3A 2T8
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0370-2693(93)90496-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a set of quantum-mechanical Hamiltonians which can be written as the F(th) power of a conserved charge: H = Q(F) with [H, Q] = 0 and F = 2,3,.... This new construction, which we call fractional supersymmetric quantum mechanics, is realized in terms of paraGrassmann variables satisfying theta(F) = 0. Furthermore, in a pseudo-classical context, we describe fractional supersymmetry transformations as the F(th) roots of time translations, and provide an action invariant under such transformations.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 7 条
[1]   FRACTIONAL SUPERSYMMETRIES IN PERTURBED COSET CFTS AND INTEGRABLE SOLITON THEORY [J].
AHN, C ;
BERNARD, D ;
LECLAIR, A .
NUCLEAR PHYSICS B, 1990, 346 (2-3) :409-439
[2]   HIGHER-ORDER PARASUPERSYMMETRIC QUANTUM-MECHANICS [J].
DURAND, S ;
MAYRAND, M ;
SPIRIDONOV, V ;
VINET, L .
MODERN PHYSICS LETTERS A, 1991, 6 (34) :3163-3169
[3]  
DURAND S, IN PRESS MOD PHYS LE
[4]  
DURAND S, 1993, IN PRESS 7 P JA SWIE
[5]  
DURAND S, 1992, IN PRESS 19 INT C GR
[6]   PARAGRASSMANN ANALYSIS AND QUANTUM GROUPS [J].
FILIPPOV, AT ;
ISAEV, AP ;
KURDIKOV, AB .
MODERN PHYSICS LETTERS A, 1992, 7 (23) :2129-2141
[7]   PARASUPERSYMMETRIC QUANTUM-MECHANICS [J].
RUBAKOV, VA ;
SPIRIDONOV, VP .
MODERN PHYSICS LETTERS A, 1988, 3 (14) :1337-1347