NONLINEAR SUPERPOSITION LAW AND FEYNMAN PROPAGATOR

被引:20
作者
NASSAR, AB [1 ]
BASSALO, JMF [1 ]
ALENCAR, PDS [1 ]
机构
[1] UNIV FED PARA,DEPT FIS,BR-66000 BELEM,BRAZIL
关键词
D O I
10.1016/0375-9601(86)90045-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:365 / 369
页数:5
相关论文
共 34 条
[1]  
ABRAHAMSCHRAUNE.B, 1985, J MATH PHYS, V27, P197
[2]   LIE TRANSFORMATION GROUP SOLUTIONS OF THE NONLINEAR ONE-DIMENSIONAL VLASOV EQUATION [J].
ABRAHAMSHRAUNER, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (06) :1428-1435
[3]   NON-LINEAR TIME-DEPENDENT ANHARMONIC-OSCILLATOR - ASYMPTOTIC-BEHAVIOR AND CONNECTED INVARIANTS [J].
BESNARD, D ;
BURGAN, JR ;
MUNIER, A ;
FEIX, MR ;
FIJALKOW, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (05) :1123-1128
[4]   2-POINT CHARACTERISTIC FUNCTION FOR KEPLER-COULOMB PROBLEM [J].
BLINDER, SM .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (10) :2000-2004
[5]  
BLINDER SM, 1984, PHYS REV LETT, V52, P1771, DOI 10.1103/PhysRevLett.52.1771
[6]  
BLINDER SM, 1974, F QUANTUM DYNAMICS
[7]   INVARIANTS FOR DISSIPATIVE NONLINEAR-SYSTEMS BY USING RESCALING [J].
FEIX, MR ;
LEWIS, HR .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (01) :68-73
[8]  
Feynman R., 1965, QUANTUM MECH PATH IN
[9]   AN EXACT INVARIANT FOR THE TIME-DEPENDENT DOUBLE WELL ANHARMONIC-OSCILLATORS - LIE THEORY AND QUASI-INVARIANCE GROUPS [J].
GAUTHIER, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (13) :2633-2639
[10]  
GOEDERT J, 1985, UNPUB PHYSICA D