VORTEX THEORY OF ANIMAL FLIGHT .1. VORTEX WAKE OF A HOVERING ANIMAL

被引:145
作者
RAYNER, JMV [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE,ENGLAND
关键词
D O I
10.1017/S0022112079000410
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The distribution of vorticity in the wake of a hovering bird or insect is considered. The wake is modelled by a chain of coaxial small-cored circular vortex rings stacked one upon another; each member of the chain is generated by a single wing-stroke. Circulation is determined by the animal's weight and the time for which a single ring must provide lift; ring size is calculated from the circulation distribution on the animal's wing. The theory is equally applicable to birds and insects, although the mechanism of ring formation differs. This approach avoids the use of lift and drag coefficients and is not bound by the constraints of steady-state aerodynamics; it gives a wake configuration in agreement with experimental observations. The classical momentum jet approach has steady momentum flux in the wake, and is difficult to relate to the wing motions of a hovering bird or insect; the vortex wake can be related to the momentum jet, but adjacent vortex elements are disjoint and momentum flux is periodic. The evolution of the wake starting from rest is considered by releasing vortex rings at appropriate time intervals and allowing them to interact in their own velocity fields. The resulting configuration depends on the feathering parameter f (which depends on the animal's morphology); f increases with body size. At the lower end of the wake rings coalesce to form a single large vortex, which breaks away from the rest of the wake at intervals. Wake contraction depends on f; the minimum areal contraction of one-half (as in momentum-jet theory) occurs only in the limit f → 0, but values calculated for smaller insects of just over one-half suggest that the momentum jet may be a good approximation to the wake when f is small. Induced power in hovering is calculated as the limit of the mean rate of increase of wake kinetic energy as time progresses. It can be related to the classical momentum-jet induced power by a simple conversion factor. For an insect or hummingbird the usual momentum-jet estimate may be between 10 and 15% too low, but for a bird it may be as much as 50% too low. This suggests that few, if any, birds are able to sustain aerobic hovering, and that as small a value of f as possible would be necessary if the bird were to hover. Tip losses (energy cost of the vortex-ring wake compared with the equivalent momentum jet) are negligible for insects, but can be in the range 15–20% for birds. © 1979, Cambridge University Press. All rights reserved.
引用
收藏
页码:697 / 730
页数:34
相关论文
共 37 条
[1]  
Batchelor G.K., 1967, INTRO FLUID DYNAMICS
[2]  
CONE CD, 1968, 52 VA I MAR SCI SPEC
[3]  
Ellington CP, 1978, COMP PHYSL WATER ION, P327
[4]   ON STEADY VORTEX RINGS OF SMALL CROSS-SECTION IN AN IDEAL FLUID [J].
FRAENKEL, LE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 316 (1524) :29-&
[5]  
GLAUERT H, 1935, AERODYNAMIC THEORY, V4, P169
[6]  
Gradshteyn I. S., 1980, TABLES OF INTEGRALS
[7]  
GREENEWALT CH, 1962, SMITHSON MISC COLLNS, V144, P2
[8]   POWER FOR HOVERING FLIGHT IN RELATION TO BODY SIZE IN HUMMINGBIRDS [J].
HAINSWORTH, FR ;
WOLF, LL .
AMERICAN NATURALIST, 1972, 106 (951) :589-+
[9]   The flight of insects and birds. [J].
Hoff, Wilhelm .
NATURWISSENSCHAFTEN, 1919, 7 (1-52) :159-162
[10]  
KARMAN TV, 1935, AERODYNAMIC THEORY, V2, P315