ON THE REMARKABLE NON-LINEAR DIFFUSION EQUATION (DELTA-DELTA-X)(A(U+B)-2(DELTA-U-DELTA-X))-(DELTA-U-DELTA-T) = 0

被引:186
作者
BLUMAN, G [1 ]
KUMEI, S [1 ]
机构
[1] UNIV BRITISH COLUMBIA,INST APPL MATH & STAT,VANCOUVER V6T 1W5,BC,CANADA
关键词
D O I
10.1063/1.524550
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the invariance properties (in the sense of Lie-Bäcklund groups) of the nonlinear diffusion equation (∂/∂curisve Greek chi)[C (u)(∂u/∂cursive Greek chi)] - (∂u/∂t ) = 0. We show that an infinite number of one-parameter Lie-Bäcklund groups are admitted if and only if the conductivity C (u) = a(u + b)-2. In this special case a one-to-one transformation maps such an equation into the linear diffusion equation with constant conductivity, (∂2ū/∂cursive Greek chī2) - (∂ū/∂t̄) = 0. We show some interesting properties of this mapping for the solution of boundary value problems. © 1980 American Institute of Physics.
引用
收藏
页码:1019 / 1023
页数:5
相关论文
共 23 条
[1]  
Anderson R L, 1972, REV MEX FIS, V21, P35
[2]   GENERALIZATION OF CONCEPT OF INVARIANCE OF DIFFERENTIAL EQUATIONS - RESULTS OF APPLICATIONS TO SOME SCHRODINGER EQUATIONS [J].
ANDERSON, RL ;
WULFMAN, CE ;
KUMEI, S .
PHYSICAL REVIEW LETTERS, 1972, 28 (15) :988-&
[3]   MELTING MODEL FOR PULSING-LASER ANNEALING OF IMPLANTED SEMICONDUCTORS [J].
BAERI, P ;
CAMPISANO, SU ;
FOTI, G ;
RIMINI, E .
JOURNAL OF APPLIED PHYSICS, 1979, 50 (02) :788-797
[4]  
Bluman G.W., 1974, SIMILARITY METHODS D
[5]  
Bluman GW, 1967, THESIS CALIFORNIA I
[6]  
Crank J, 1956, MATH DIFFUSION
[7]  
FOKAS AA, 1979, THESIS CALIFORNIA I, pCH5
[10]   LIE-BACKLUND TANGENT TRANSFORMATIONS [J].
IBRAGIMOV, NH ;
ANDERSON, RL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 59 (01) :145-162