NONCLASSICAL SYMMETRY REDUCTIONS FOR THE KADOMTSEV-PETVIASHVILI EQUATION

被引:85
作者
CLARKSON, PA [1 ]
WINTERNITZ, P [1 ]
机构
[1] UNIV MONTREAL,CTR RECH MATH,MONTREAL H3C 3J7,QUEBEC,CANADA
来源
PHYSICA D | 1991年 / 49卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0167-2789(91)90148-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss dimensional reductions of the physically and mathematically significant Kadomtsev-Petviashvili equation. In particular, we exhibit some new reductions of the Kadomtsev-Petviashvili equation which are obtained by a generalization of the direct method for determining similarity reductions recently developed by Clarkson and Kruskal [J. Math. Phys. 30 (1989) 2201]. New solutions of the Kadomtsev-Petviashvili equation are obtained in terms of Weierstrass elliptic functions, solutions of the Lame equations, and the first, second and fourth Painleve transcendents. A group theoretical explanation of the new solutions is provided in terms of conditional symmetries, leaving only specific subsets of solutions of the Kadomtsev-Petviashvili equation invariant.
引用
收藏
页码:257 / 272
页数:16
相关论文
共 48 条
[1]   EVOLUTION OF PACKETS OF WATER-WAVES [J].
ABLOWITZ, MJ ;
SEGUR, H .
JOURNAL OF FLUID MECHANICS, 1979, 92 (JUN) :691-715
[2]  
ABLOWITZ MJ, 1983, STUD APPL MATH, V69, P135
[3]  
Abramowitz M, 1965, HDB MATH TABLES
[4]  
AIRAULT H, 1979, STUD APPL MATH, V61, P31
[5]  
BLUMAN GW, 1969, J MATH MECH, V18, P25
[6]  
BLUMAN GW, 1989, APPL MATH SCI, P81
[7]  
BLUMAN GW, 1974, APPL MATH SCI, V13
[8]   ON THE INFINITE-DIMENSIONAL SYMMETRY GROUP OF THE DAVEY-STEWARTSON EQUATIONS [J].
CHAMPAGNE, B ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (01) :1-8
[9]  
CHAMPAGNE B, 1990, CRM1989 PREPR
[10]  
Clarkson P. A., 1990, EUR J APPL MATH, V3, P279