A SEMIDYNAMIC CONSTRUCTION OF HIGHER-ORDER VORONOI DIAGRAMS AND ITS RANDOMIZED ANALYSIS

被引:27
作者
BOISSONNAT, JD
DEVILLERS, O
TEILLAUD, M
机构
[1] Institut National de Recherche en Informatique et Automatique, Sophia-Antipolis cedex, 06902
关键词
COMPUTATIONAL GEOMETRY; DYNAMIC ALGORITHM; RANDOMIZED COMPLEXITY ANALYSIS; ORDER K-VORONOI DIAGRAM;
D O I
10.1007/BF01228508
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The k-Delaunay tree extends the Delaunay tree introduced in [1], and [2]. It is a hierarchical data structure that allows the semidynamic construction of the higher-order Voronoi diagrams of a finite set of n points in any dimension. In this paper we prove that a randomized construction of the k-Delaunay tree, and thus of all the order less-than-or-equal-to k Voronoi diagrams, can be done in O(n log n + k3n) expected time and O(k2n) expected storage in the plane, which is asymptotically optimal for fixed k. Our algorithm extends to d-dimensional space with expected time complexity O(k[(d+1/2]+1n[(d+1)/2]) and space complexity O(k[(d+1)/2]n[d+1)2]). The algorithm is simple and experimental results are given.
引用
收藏
页码:329 / 356
页数:28
相关论文
共 17 条
[1]   A LINEAR-TIME ALGORITHM FOR COMPUTING THE VORONOI DIAGRAM OF A CONVEX POLYGON [J].
AGGARWAL, A ;
GUIBAS, LJ ;
SAXE, J ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (06) :591-604
[2]   APPLICATIONS OF RANDOM SAMPLING TO ONLINE ALGORITHMS IN COMPUTATIONAL GEOMETRY [J].
BOISSONNAT, JD ;
DEVILLERS, O ;
SCHOTT, R ;
TEILLAUD, M ;
YVINEC, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 8 (01) :51-71
[3]  
BOISSONNAT JD, INRIA1140 TECHN REP
[4]  
BOISSONNAT JD, 1986, 2D P ANN S COMP GEOM, P260
[5]  
CHAZELLE B, 1985, P ACM S COMPUTATIONA, P228
[6]   NEW APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY [J].
CLARKSON, KL .
DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (02) :195-222
[7]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[8]   HIGHER-DIMENSIONAL VORONOI DIAGRAMS IN LINEAR EXPECTED TIME [J].
DWYER, RA .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (04) :343-367
[9]   CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES WITH APPLICATIONS [J].
EDELSBRUNNER, H ;
OROURKE, J ;
SEIDEL, R .
SIAM JOURNAL ON COMPUTING, 1986, 15 (02) :341-363
[10]   COMPUTING DIRICHLET TESSELLATIONS IN PLANE [J].
GREEN, PJ ;
SIBSON, R .
COMPUTER JOURNAL, 1978, 21 (02) :168-173