Flow at high Reynolds numbers through anisotropic porous media

被引:11
作者
Barak, Amitzur Z. [1 ]
Bear, Jacob [1 ]
机构
[1] Technion Israel Inst Technol, Dept Civil Engn, IL-32000 Haifa, Israel
关键词
D O I
10.1016/0309-1708(81)90025-7
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
An approximate expression is developed for the relationship between the hydraulic gradient (J), the specific discharge (q) and fluid and porous matrix properties in the case of saturated, steady and uniform (macroscopic) flow of a Newtonian liquid at high Reynolds numbers through a homogeneous anisotropic porous medium: gJ = (vw((2)) + B-(4): qq/q + C-(3).q).q In this expression, the tensors w((2)), B-(4) and C-(3) denote properties of the solid matrix only. The tensors W-(2), and C-(3) are symmetrical; the tensor B-(4) is symmetrical only in the first and last pairs of indices. It seems that no mathematical expression with a finite number of parameters exists, which can serve as a universal exact expression for the sought relationship between J and q.
引用
收藏
页码:54 / 66
页数:13
相关论文
共 18 条
[1]  
Barak A.Z, 1973, THESIS
[2]  
Bear J, 1988, DYNAMICS FLUIDS PORO
[3]   NON-DARCY FLOW THEOUGH FIBROUS POROUS MEDIA [J].
BEAVERS, GS ;
SPARROW, EM .
JOURNAL OF APPLIED MECHANICS, 1969, 36 (04) :711-&
[4]   CAPILLARY-ORIFICE MODEL FOR HIGH-SPEED FLOW THROUGH POROUS MEDIA [J].
BLICK, EF .
INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1966, 5 (01) :90-&
[5]  
Carman PC, 1937, T I CHEM ENG-LOND, V15, P150, DOI DOI 10.1016/S0263-8762(97)80003-2
[6]  
Chauveteau G, 1967, HOUILLE BLANCHE, V8, P1
[7]  
Dudgeon C., 1966, HOUILLE BLANCHE, V7, P785, DOI [10.1051/lhb/1966049, DOI 10.1051/LHB/1966049]
[8]  
ERGUN S, 1952, CHEM ENG PROG, V48, P89
[9]  
Forchheimer P, 1901, Z VER DTSCH ING, V45, P1781
[10]  
Forthheimer P, 1930, HYDRAULIK, V3, P60