COMPUTATION OF MAPS FOR PARTICLE AND LIGHT OPTICS BY SCALING, SPLITTING, AND SQUARING

被引:14
作者
DRAGT, AJ [1 ]
机构
[1] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
关键词
D O I
10.1103/PhysRevLett.75.1946
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
New methods are presented for the integration of autonomous flows, with an emphasis on the Hamiltonian case. The Hamiltonian results are expected to have important applications for charged-particle optics (including accelerator design) and for graded-index light optics.
引用
收藏
页码:1946 / 1948
页数:3
相关论文
共 10 条
[1]  
Collatz L., 1966, FUNCTIONAL ANAL NUME
[2]  
DRAGT A, 1982, AIP C P, V87
[4]   LIE ALGEBRAIC TREATMENT OF LINEAR AND NONLINEAR BEAM DYNAMICS [J].
DRAGT, AJ ;
NERI, F ;
RANGARAJAN, G ;
DOUGLAS, DR ;
HEALY, LM ;
RYNE, RD .
ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, 1988, 38 :455-496
[5]   COMPUTATION OF NONLINEAR BEHAVIOR OF HAMILTONIAN-SYSTEMS USING LIE ALGEBRAIC METHODS [J].
DRAGT, AJ ;
FOREST, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (12) :2734-2744
[6]  
DRAGT AJ, 1986, F LIE ALGEBRAIC THEO
[7]  
DRAGT AJ, 1989, CONCATENATION LIE AL, V2
[8]   4TH-ORDER SYMPLECTIC INTEGRATION [J].
FOREST, E ;
RUTH, RD .
PHYSICA D, 1990, 43 (01) :105-117
[9]   19 DUBIOUS WAYS TO COMPUTE EXPONENTIAL OF A MATRIX [J].
MOLER, C ;
VANLOAN, C .
SIAM REVIEW, 1978, 20 (04) :801-836
[10]   RECENT PROGRESS IN THE THEORY AND APPLICATION OF SYMPLECTIC INTEGRATORS [J].
Yoshida, Haruo .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1993, 56 (1-2) :27-43