ANTI-HEBBIAN LEARNING IN TOPOLOGICALLY CONSTRAINED LINEAR-NETWORKS - A TUTORIAL

被引:30
作者
PALMIERI, F
ZHU, J
CHANG, CH
机构
[1] Department of Electrical and Systems Engineering, University of Connecticut, Storrs
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1993年 / 4卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.1109/72.248453
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using standard results from the adaptive signal processing literature, we review the learning behavior of various constrained linear neural networks made up of anti-Hebbian synapses, where learning is driven by the criterion of minimizing the node information energy. We point out how simple learning rules of Hebbian type can provide fast self-organization, under rather wide connectivity constraints. We verify the results of the theory in a set of simulations.
引用
收藏
页码:748 / 761
页数:14
相关论文
共 39 条
[1]  
Anderson B. D. O., 1979, OPTIMAL FILTERING
[2]  
BARLOW H, 1989, NEURAL COMPUT, P412
[3]  
BARLOW H, 1989, NEURAL COMPUT, P295
[4]  
BARLOW HB, 1989, COMPUTING NEURON
[5]  
BIENENSTOCK EL, 1982, NEUROSCIENCE, P32
[6]  
Chen C.-T., 1999, ELECT COMPUTER ENG, Vthird
[7]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211
[8]  
FOLDIAK P, 1988, NEURAL NETWORKS, V2, P459
[9]   Learning Invariance from Transformation Sequences [J].
Foldiak, Peter .
NEURAL COMPUTATION, 1991, 3 (02) :194-200
[10]  
GOLUB GH, 1989, MATRIX COMPUTATIONS