OPTIMAL ADAPTIVE FILTER REALIZATIONS FOR SAMPLE STOCHASTIC PROCESSES WITH AN UNKNOWN PARAMETER

被引:10
作者
HILBORN, CG
LAINIOTIS, DG
机构
[1] Dept. of Elec. Engrg., University of Texas, Austin, Tex.
关键词
D O I
10.1109/TAC.1969.1099328
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Techniques are given for realizing optimal learning systems for filtering a sampled stochastic process in the presence of an unknown constant or time-varying parameter. It is shown how the nonlinear Bayes optimal (quadratic sense) adaptive filters can be directly realized for continuous parameter spaces by real-time analog systems. Examples are given for both constant and time-varying unknown parameters. Copyright © 1970 by The Institute of Electrical and Electronics Engineers, Inc.
引用
收藏
页码:767 / +
页数:1
相关论文
共 11 条
[1]  
BALAKRISHNAN AV, 1962, P NATL TELEMETERING, V2
[3]  
DAVISSON LD, 1965 P NEC
[4]  
GABOR D, 1961, P IEE LONDON, V108
[5]  
GERSHO A, 1963, EE559 CORN U TECH RE
[6]  
GERSHO A, 1963, THESIS CORNELL U
[7]   OPTIMAL ESTIMATION IN PRESENCE OF UNKNOWN PARAMETERS [J].
HILBORN, CG ;
LAINIOTI.DG .
IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, 1969, SSC5 (01) :38-&
[8]  
MAGIL DT, 1963, SEL63143 STANF EL LA
[9]  
SHAW LG, 1960, 21062 STANF EL LABS
[10]  
SPRAGINS JD, G1037 STANF EL LABS