ON THE INDEPENDENCE NUMBER OF RANDOM GRAPHS

被引:110
作者
FRIEZE, AM
机构
[1] Department of Mathematics, Carnegie Mellon University, Pittsburgh
关键词
D O I
10.1016/0012-365X(90)90149-C
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let α(Gn,p) denote the independence number of the random graph Gn,p. Let d=np. We show that if ε{lunate} > 0 is fixed then with probability going to 1 as n → ∞ ∥α(Gn,p)- 2n d(logd-loglogd-log2+1)∥≤ ε{lunate}n d provided dε{lunate}≤d=o(n), where dε{lunate} is some fixed constant. © 1990.
引用
收藏
页码:171 / 175
页数:5
相关论文
共 8 条
[1]  
BOLLOBAS B, 1976, MATH PROC CAMBRIDGE, V80, P419, DOI 10.1017/S0305004100053056
[2]  
BOLLOBAS B, IN PRESS COMBINATORI
[3]  
Bollobas B., 1985, RANDOM GRAPHS
[4]   COLORING RANDOM GRAPHS [J].
GRIMMETT, GR ;
MCDIARMID, CJH .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (MAR) :313-324
[5]  
Matula David W., 1970, P 2 CHAP HILL C COMB, P356
[6]   EXPOSE-AND-MERGE EXPLORATION AND THE CHROMATIC NUMBER OF A RANDOM GRAPH [J].
MATULA, DW .
COMBINATORICA, 1987, 7 (03) :275-284
[7]  
SHAMIR E, IN PRESS COMBINATORI
[8]  
Stout W, 1974, ALMOST SURE CONVERGE