NONLINEAR RELAXATION IN THE PRESENCE OF AN ABSORBING BARRIER

被引:89
作者
CIUCHI, S
DEPASQUALE, F
SPAGNOLO, B
机构
[1] UNIV AQUILA,DIPARTIMENTO FIS,I-67010 COPPITO,ITALY
[2] UNIV PALERMO,DIPARTIMENTO ENERGET & APPL FIS,I-90128 PALERMO,ITALY
来源
PHYSICAL REVIEW E | 1993年 / 47卷 / 06期
关键词
D O I
10.1103/PhysRevE.47.3915
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the nonlinear relaxation in the presence of multiplicative noise by means of a simple approximation scheme valid outside the critical region and exact asymptotic expansion at the critical point. The theory is developed in the Malthus-Verhulst stochastic model case. We find nonmonotonic growth of fluctuations during the transient. At the critical point we study the statistical properties of the finite time average of the original process. We obtain an exact result for the generating function exhibiting scaling asymptotic behavior at the critical point. We deduce also an asymptotic sum rule for the n-times correlation function of the original process and the asymptotic expression of the two-times correlation function. Our theoretical results are compared with numerical simulations and steady-state known properties.
引用
收藏
页码:3915 / 3926
页数:12
相关论文
共 26 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   TIME-DEPENDENT STATISTICAL PROPERTIES OF LASER RADIATION [J].
ARECCHI, FT ;
DEGIORGIO, V ;
QUERZOLA, B .
PHYSICAL REVIEW LETTERS, 1967, 19 (20) :1168-+
[3]   NON-LINEAR DYNAMICS OF SYSTEMS COUPLED WITH EXTERNAL NOISE - SOME EXACT RESULTS [J].
BRENIG, L ;
BANAI, N .
PHYSICA D, 1982, 5 (2-3) :208-226
[4]  
CARETA A, 1990, PHYS REV A, V44, P2284
[5]  
CIUCHI S, 1991, LARGE SCALE MOL SYST
[6]  
de Pasquale F., 1979, Physics Letters A, V72A, P7, DOI 10.1016/0375-9601(79)90509-7
[7]   ON THE DISTRIBUTION OF A RANDOM VARIABLE OCCURRING IN 1D DISORDERED-SYSTEMS [J].
DECALAN, C ;
LUCK, JM ;
NIEUWENHUIZEN, TM ;
PETRITIS, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (03) :501-523
[8]  
Gihman I. I., 1972, STOCHASTIC DIFFERENT
[9]  
Gradshteyn IS, 1980, TABLES INTEGRALS SUM
[10]  
HAKKE F, 1981, PHYS REV A, V23, P3235