THE BINOMIAL QMF-WAVELET TRANSFORM FOR MULTIRESOLUTION SIGNAL DECOMPOSITION

被引:30
作者
AKANSU, AN [1 ]
HADDAD, RA [1 ]
CAGLAR, H [1 ]
机构
[1] POLYTECH UNIV,SCH ELECT ENGN & COMP SCI,HAWTHORNE,NY 10532
关键词
Binomial filters - Maximally flat filters - Multiresolution signal decomposition - Orthogonal binomial filters - Orthogonal filters - QMF-wavelet transforms - Quadrature mirror filters (QMF) - Signal decomposition;
D O I
10.1109/TSP.1993.193123
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a class of orthogonal binomial filters that provide a set of basis functions for a bank of perfect reconstruction (PR) finite impulse response quadrature mirror filters (FIR QMF). These binomial QMF's are shown to be the same filters as those derived from a discrete orthonormal wavelet transform approach by Daubechies. These filters are the unique maximally flat magnitude square PR QMF's. It is shown that the binomial QMF outperforms the discrete cosine transform objectively for AR(1) sources and test images considered.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 18 条
[1]  
Akansu A. N., 1992, MULTIRESOLUTION SIGN
[2]   ON-SIGNAL DECOMPOSITION TECHNIQUES [J].
AKANSU, AN ;
LIU, YP .
OPTICAL ENGINEERING, 1991, 30 (07) :912-920
[3]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540
[4]  
CAGLAR H, IN PRESS IEEE T SIGN
[5]  
CAGLAR H, 1991, NOV P SPIE SPSE C VI, P86
[6]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[7]  
Gharavi H., 1986, Proceedings of the SPIE - The International Society for Optical Engineering, V707, P51, DOI 10.1117/12.937248
[8]  
HADDAD RA, 1988, IEEE T ACOUST SP MAY, P1404
[9]  
HADDAD RA, 1971, IEEE T AUDIO ELE DEC, P296
[10]  
Jayant N.C., 1984, DIGITAL CODING WAVEF