The symbiotic effectiveness and nodulation competitiveness of Rhizobium leguminosarum bv. trifolii soil isolates were evaluated under nonsoil greenhouse conditions. The isolates which we used represented both major and minor nodule-occupying chromosomal types (electrophoretic types [ETs]) recovered from field-grown subclover (Trifolium subterraneum L.). Isolates representing four ETs (ETs 2, 3, 7, and 8) that were highly successful field nodule occupants fixed between 2- and 10-fold less nitrogen and produced lower herbage dry weights and first-harvest herbage protein concentrations than isolates that were minor nodule occupants of field-grown plants. Despite their equivalent levels of abundance in nodules on field-grown subclover plants, ET 2 and 3 isolates exhibited different competitive nodulation potentials under nonsoil greenhouse conditions. ET 3 isolates generally occupied more subclover nodules than isolates belonging to other ETs when the isolates were mixed in 1:1 inoculant ratios and inoculated onto seedlings. In contrast, ET 2 isolates were less successful at nodulating under these conditions. In many cases, ET 2 isolates required a numerical advantage of at least 6:1 to 11:1 to occupy significantly more nodules than their competitors. We identified highly effective isolates that were as competitive as the ET 3 isolates despite representing serotypes that were rarely recovered from nodules of field-grown plants. When one of the suboptimally effective isolates (ET2-1) competed with an effective and competitive isolate (ET31-5) at several different inoculant ratios, the percentages of nodules occupied by the former increased as its numerical advantage increased. Although subclover yields declined as nodule occupancy by ET2-1 increased, surprisingly, this occurred at inoculant ratios at which large percentages of nodules were still occupied by ET31-5.