CONSTRUCTIVE GROUP RELAXATIONS FOR INTEGER PROGRAMS

被引:5
作者
BELL, DE [1 ]
机构
[1] INT INST APPL SYST ANAL,LAXENBURG,AUSTRIA
关键词
INTEGER PROGRAMMING;
D O I
10.1137/0130063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent work by M. L. Fisher and J. F. Shapiro has used R. E. Gomory's group theoretic methods together with Lagrange multipliers to obtain bounds for the optimal value of integer programs. Here it is shown how an extension of the associated Abelian group can improve the bound without the artificiality of adding a cut. It is proved that there exists a finite group for which the dual ascent procedure of Fisher and Shapiro converges to the optimal integer solution. Constructive methods are given for finding this group. A worked example is included.
引用
收藏
页码:708 / 719
页数:12
相关论文
共 11 条
[1]   IMPROVED INTEGER PROGRAMMING BOUNDS USING INTERSECTIONS OF CORNER POLYHEDRA [J].
BELL, DE ;
FISHER, ML .
MATHEMATICAL PROGRAMMING, 1975, 8 (03) :345-368
[2]  
BELL DE, 1973, 81 MASS I TECH OP RE
[3]   CONSTRUCTIVE DUALITY IN INTEGER PROGRAMMING [J].
FISHER, ML ;
SHAPIRO, JF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1974, 27 (01) :31-52
[4]  
FISHER ML, 1975, MATHEMATICAL PROGRAM, V3, P56
[5]  
GEOFFRION AM, 1972, 195 U CAL WEST MAN S
[6]  
Gomory R. E., 1969, Linear Algebra and Its Applications, V2, P451, DOI 10.1016/0024-3795(69)90017-2
[7]   ADAPTIVE GROUP THEORETIC ALGORITHM FOR INTEGER PROGRAMMING PROBLEMS [J].
GORRY, GA ;
SHAPIRO, JF .
MANAGEMENT SCIENCE SERIES A-THEORY, 1971, 17 (05) :285-306
[8]  
MOSTOW GD, 1963, FUNDAMENTAL STRUCTUR
[9]   GENERALIZED LAGRANGE MULTIPLIERS IN INTEGER PROGRAMMING [J].
SHAPIRO, JF .
OPERATIONS RESEARCH, 1971, 19 (01) :68-&
[10]  
WOLSEY LA, 1969, 41 MASS I TECH OP RE