FLUID DYNAMICAL LIMIT OF NON-LINEAR BOLTZMANN-EQUATION TO LEVEL OF COMPRESSIBLE EULER EQUATION

被引:146
作者
NISHIDA, T
机构
[1] Department of Applied Mathematics and Physics, Kyoto University, Kyoto
关键词
D O I
10.1007/BF01609490
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nonlinear Boltzmann equation for a rarefied gas is investigated in the fluid dynamical limit to the level of compressible Euler equation locally in time, as the mean free path ε tends to zero. The nonlinear hyperbolic conservation laws obtained as the limit are also the first approximation of the Chapman-Enskog expansion. © 1978 Springer-Verlag.
引用
收藏
页码:119 / 148
页数:30
相关论文
共 19 条
[1]  
CHAPMAN S, 1970, MATH THEORY NON UNIF
[2]  
ELLIS RS, 1975, J MATH PURE APPL, V54, P157
[3]  
ELLIS RS, 1975, J MATH PURE APPL, V54, P125
[4]   ASYMPTOTIC THEORY OF THE BOLTZMANN EQUATION [J].
GRAD, H .
PHYSICS OF FLUIDS, 1963, 6 (02) :147-181
[5]   ON BOLTZMANNS H-THEOREM [J].
GRAD, H .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1965, 13 (01) :259-&
[6]  
GRAD H, 1958, HDB PHYSIK, V12
[7]  
Grad H., 1962, RAREFIED GAS DYNAMIC, V1, P26
[8]  
Grad H., 1965, P S APPL MATH, VXVII, P154
[9]  
INOUE K, 1977, APPL MATH OPTIMIZ IN, V3, P24
[10]   CONVERGENCE OF CHAPMAN-ENSKOG EXPANSION FOR LINEARIZED BOLTZMANN EQUATION [J].
MCLENNAN, JA .
PHYSICS OF FLUIDS, 1965, 8 (09) :1580-&