CONSTRUCTING DISCRETE MEDIAL AXIS OF 3-D OBJECTS

被引:31
作者
Goldak, John A. [1 ]
Yu, Xinhua [1 ]
Knight, Alan [1 ]
Dong, Lingxian [1 ]
机构
[1] Carleton Univ, Dept Mech & Aerosp Engn, Ottawa, ON K1S 5B6, Canada
关键词
Computational geometry; Delaunay triangulation; medial axis;
D O I
10.1142/S0218195991000220
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, an algorithm to construct the approximate medial axis of an object is proposed. The algorithm is based on the Delaunay triangulation of points on the object boundaries. Because the medial axis constructed by this algorithm consists of a set of discrete points, we call it the discrete medial axis. Based on the classification of these discrete points, the structure of the medial axis surfaces of a three-dimensional object are discussed in detail. The correctness of the algorithm is substantiated by a brief theoretical analysis.
引用
收藏
页码:327 / 339
页数:13
相关论文
共 13 条
[1]   BIOLOGICAL SHAPE AND VISUAL SCIENCE .1. [J].
BLUM, H .
JOURNAL OF THEORETICAL BIOLOGY, 1973, 38 (02) :205-287
[2]   SHAPE DESCRIPTION USING WEIGHTED SYMMETRIC AXIS FEATURES [J].
BLUM, H ;
NAGEL, RN .
PATTERN RECOGNITION, 1978, 10 (03) :167-180
[3]  
Blum H., 1967, MODELS PERCEPTION SP, P362, DOI DOI 10.1142/S0218654308001154
[4]  
Bookstein Fred L., 1979, COMPUTER GRAPHICS IM, V11, P123
[5]   COMPUTING DIRICHLET TESSELLATIONS [J].
BOWYER, A .
COMPUTER JOURNAL, 1981, 24 (02) :162-166
[6]  
Hoffmann C. M., 1990, CSDTR1014 PURD U
[8]  
Patrikalakis N. M., 1989, 902 MIT SEA GRANT CO
[9]  
Patrikalakis N. M., 1989, P 16 ANN MIT SEA GRA
[10]  
Sapidis N. S., 1991, Proceedings. Symposium on Solid Modeling Foundations and CAD/CAM Applications, P465, DOI 10.1145/112515.112581