BOOTSTRAP AND WILD BOOTSTRAP FOR HIGH-DIMENSIONAL LINEAR-MODELS

被引:503
作者
MAMMEN, E
机构
关键词
BOOTSTRAP; WILD BOOTSTRAP; LINEAR MODELS; DIMENSION ASYMPTOTICS;
D O I
10.1214/aos/1176349025
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper two bootstrap procedures are considered for the estimation of the distribution of linear contrasts and of F-test statistics in high dimensional linear models. An asymptotic approach will be chosen where the dimension p of the model may increase for sample size n --> infinity. The range of validity will be compared for the normal approximation and for the bootstrap procedures. Furthermore, it will be argued that the rates of convergence are different for the bootstrap procedures in this asymptotic framework. This is in contrast to the usual asymptotic approach where p is fixed.
引用
收藏
页码:255 / 285
页数:31
相关论文
共 29 条
[1]   PREPIVOTING TO REDUCE LEVEL ERROR OF CONFIDENCE SETS [J].
BERAN, R .
BIOMETRIKA, 1987, 74 (03) :457-468
[2]  
BERAN R, 1986, ANN STAT, V14, P1295, DOI 10.1214/aos/1176350143
[3]  
Bickel Peter J, 1983, FESTSCHRIFT EL LEHMA, P28
[4]   RATE OF CONVERGENCE FOR THE WILD BOOTSTRAP IN NONPARAMETRIC REGRESSION [J].
CAOABAD, R .
ANNALS OF STATISTICS, 1991, 19 (04) :2226-2231
[5]  
CAOABAD R, 1990, BOOTSTRAP METHODS RE
[6]   A CENTRAL-LIMIT-THEOREM FOR GENERALIZED QUADRATIC-FORMS [J].
DEJONG, P .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 75 (02) :261-277
[7]   1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE [J].
EFRON, B .
ANNALS OF STATISTICS, 1979, 7 (01) :1-26
[8]  
Efron B, 1982, JACKKNIFE BOOTSTRAP
[9]  
EHM W, 1986, SFB123 U HEID PERPR
[10]  
EHM W, 1991, THESIS U HEIDELBERG