LIMIT THEOREMS FOR MULTITYPE CONTINUOUS TIME MARKOV BRANCHING PROCESSES .I. CASE OF AN EIGENVECTOR LINEAR FUNCTIONAL

被引:23
作者
ATHREYA, KB
机构
[1] Mathematics Research Center, United States Army The University of Wisconsin, Madison, 53706, Wisconsin
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1969年 / 12卷 / 04期
关键词
D O I
10.1007/BF00538753
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X(t)=(X1(t), X2(t), ⋯, Xt(t)) be a k-type (2≦k<∞) continuous time, supercritical, nonsingular, positively regular Markov branching process. Let M(t)=((mij(t))) be the mean matrix where mij(t)=E(Xj(t)|Xr(0)=δir for r=1, 2, ⋯, k) and write M(t)=exp(At). Let ξ be an eigenvector of A corresponding to an eigenvalue λ. Assuming second moments this paper studies the limit behavior as t → ∞ of the stochastic process {Mathematical expression}. It is shown that i) if 2 Re λ>λ1, then ξ · X(t)e{-λt| converges a.s. and in mean square to a random variable. ii) if 2 Re λ≦λ1 then [ξ · X(t)] f(v · X(t)) converges in law to a normal distribution where f(x)=(√x)-1 if 2 Re λ<λ1 and f(x)=(√x log x)-1 if 2 Re λ=λ1, λ1 the largest real eigenvalue of A and v the corresponding right eigenvector. © 1969 Springer-Verlag.
引用
收藏
页码:320 / &
相关论文
共 12 条
[1]  
ATHREYA K, TO BE PUBLISHED
[2]  
ATHREYA K, 1967, THESIS STANFORD U
[3]  
ATHREYA K, 1967, ANN MATH STATISTICS, V39, P347
[4]   EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND RELATED LIMIT THEOREMS [J].
ATHREYA, KB ;
KARLIN, S .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (06) :1801-&
[6]  
Doob J. L., 1953, STOCHASTIC PROCESSES, V101
[7]   FRIEDMAN,BERNARD URN [J].
FREEDMAN, DA .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (03) :956-970
[8]   A SIMPLE URN MODEL [J].
FRIEDMAN, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1949, 2 (01) :59-70
[9]  
Harris TE., 1963, THEORY BRANCHING PRO
[10]  
KARLIN S, 1966, FIRST COURSE STOCHAS