BISTABLE CHAOS .1. UNFOLDING THE CUSP

被引:53
作者
KING, GP
GAITO, ST
机构
[1] Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 06期
关键词
D O I
10.1103/PhysRevA.46.3092
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe a simple and intuitive model that relates the catastrophe theory unfolding of a double-well potential with the unfolding of a bimodal map characterizing the dynamics of an autonomous chaotic Van der Pol-Duffing oscillator. The construction of the model was facilitated by developing an analogy with the stochastic dynamics of a particle in a double-well potential. Experimental evidence supporting the model is given.
引用
收藏
页码:3092 / 3099
页数:8
相关论文
共 22 条
  • [1] [Anonymous], 1977, CATASTROPHE THEORY S
  • [2] Birman J., 1983, CONT MATH, V20, P1, DOI DOI 10.1090/CONM/020/718132
  • [3] KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS
    BIRMAN, JS
    WILLIAMS, RF
    [J]. TOPOLOGY, 1983, 22 (01) : 47 - 82
  • [4] EXTRACTING QUALITATIVE DYNAMICS FROM EXPERIMENTAL-DATA
    BROOMHEAD, DS
    KING, GP
    [J]. PHYSICA D, 1986, 20 (2-3): : 217 - 236
  • [5] CASDAGLI M, 1992, J ROY STAT SOC B MET, V54, P303
  • [6] SYMMETRY-INCREASING BIFURCATION OF CHAOTIC ATTRACTORS
    CHOSSAT, P
    GOLUBITSKY, M
    [J]. PHYSICA D, 1988, 32 (03): : 423 - 436
  • [7] DRAZIN PG, IN PRESS PHYSICA D, V58
  • [8] PHASE-SHIFTS IN STOCHASTIC RESONANCE
    DYKMAN, MI
    MANNELLA, R
    MCCLINTOCK, PVE
    STOCKS, NG
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (20) : 2985 - 2988
  • [9] DYKMAN MI, IN PRESS PHYSICA D, V58
  • [10] PERIODICITY AND CHAOS IN AN AUTONOMOUS ELECTRONIC SYSTEM
    FREIRE, E
    FRANQUELO, LG
    ARACIL, J
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1984, 31 (03): : 237 - 247