BETHE SOLUTION FOR THE DYNAMIC-SCALING EXPONENT OF THE NOISY BURGERS-EQUATION

被引:262
作者
GWA, LH [1 ]
SPOHN, H [1 ]
机构
[1] UNIV MUNICH, W-8000 MUNICH 2, GERMANY
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 02期
关键词
D O I
10.1103/PhysRevA.46.844
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We approximate the noisy Burgers equation by the single-step model, alias the asymmetric simple exclusion process. The generator of the corresponding master equation is identical to the ferromagnetic Heisenberg spin chain with a purely imaginary XY coupling. We Bethe diagonalize this nonsymmetric Hamiltonian. We show that the gap between the ground state and first excited state scales as N-3/2 for large system size N. The gap between the largest and next-largest eigenvalue scales as N-1. This property hints at conformal invariance. We also explain the connection to the six-vertex model.
引用
收藏
页码:844 / 854
页数:11
相关论文
共 29 条
[1]   CONFORMAL-INVARIANCE AND THE SPECTRUM OF THE XXZ CHAIN [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT .
PHYSICAL REVIEW LETTERS, 1987, 58 (08) :771-774
[2]  
Burgers J. M., 1974, NONLINEAR DIFFUSION
[3]  
Cardy J. L., 1987, PHASE TRANSITIONS CR, V11
[4]  
DHAR D, 1987, PHASE TRANSIT, V9, P51, DOI 10.1080/01411598708241334
[5]  
DIEUDONNE J, 1971, INFINITESIMAL CALCUL, P285
[6]   EQUIVALENCE OF CELLULAR AUTOMATA TO ISING-MODELS AND DIRECTED PERCOLATION [J].
DOMANY, E ;
KINZEL, W .
PHYSICAL REVIEW LETTERS, 1984, 53 (04) :311-314
[7]   RIGOROUS DERIVATION OF DOMAIN GROWTH-KINETICS WITHOUT CONSERVATION-LAWS [J].
KANDEL, D ;
DOMANY, E .
JOURNAL OF STATISTICAL PHYSICS, 1990, 58 (3-4) :685-706
[8]   A 6-VERTEX MODEL AS A DIFFUSION PROBLEM - DERIVATION OF CORRELATION-FUNCTIONS [J].
KANDEL, D ;
DOMANY, E ;
NIENHUIS, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15) :L755-L762
[9]  
KANDEL D, COMMUNICATION
[10]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892