2 TYPES OF RAS MUTANTS THAT DOMINANTLY INTERFERE WITH ACTIVATORS OF RAS

被引:49
作者
JUNG, V
WEI, W
BALLESTER, R
CAMONIS, J
MI, S
VANAELST, L
WIGLER, M
BROEK, D
机构
[1] COLD SPRING HARBOR LAB,COLD SPRING HARBOR,NY 11724
[2] UNIV SO CALIF,KENNETH NORRIS JR CANC HOSP & RES CTR,SCH MED,DEPT BIOCHEM & MOLEC BIOL,LOS ANGELES,CA 90033
[3] UNIV CALIF SANTA BARBARA,DEPT SCI BIOL,SANTA BARBARA,CA 93106
关键词
D O I
10.1128/MCB.14.6.3707
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the fission yeast Schizosaccharomyces pombe, ras1 regulates both sexual development (conjugation and sporulation) and cellular morphology. Two types of dominant interfering mutants were isolated in a genetic screen for ras1 mutants that blocked sexual development. The first type of mutation, at Ser-22, analogous to the H-ras(Asn-17) mutant (L. A. Feig and G. M. Cooper, Mol. Cell. Biol. 8:3235-3243, 1988), blocked only conjugation, whereas a second type of mutation, at Asp-62, interfered with conjugation, sporulation, and cellular morphology. Analogous mutations at position 64 of Saccharomyces cerevisiae RAS2 or position 57 of human H-ras also resulted in dominant interfering mutants that interfered specifically and more profoundly than mutants of the first type with RAS-associated pathways in both S. pombe or S. cerevisiae. Genetic evidence indicating that both types of interfering mutants function upstream of RAS is provided. Biochemical evidence showing that the mutants are altered in their interaction with the CDC25 class of exchange factors is presented. We show that both H-ras(Asn-17) and H-ras(Tyr-57), compared with wild-type H-ras, are defective in their guanine nucleotide-dependent release from human cdc25 and that this defect is more severe for the H-ras(Tyr-57) mutant. Such a defect would allow the interfering mutants to remain bound to, thereby sequestering RAS exchange factors. The more severe interference phenotype of this novel interfering mutant suggests that it functions by titrating out other positive regulators of RAS besides those encoded by ste6 and CDC25.
引用
收藏
页码:3707 / 3718
页数:12
相关论文
共 67 条
[1]   GENETIC-ANALYSIS OF MAMMALIAN GAP EXPRESSED IN YEAST [J].
BALLESTER, R ;
MICHAELI, T ;
FERGUSON, K ;
XU, HP ;
MCCORMICK, F ;
WIGLER, M .
CELL, 1989, 59 (04) :681-686
[2]   THE NF1 LOCUS ENCODES A PROTEIN FUNCTIONALLY RELATED TO MAMMALIAN GAP AND YEAST IRA PROTEINS [J].
BALLESTER, R ;
MARCHUK, D ;
BOGUSKI, M ;
SAULINO, A ;
LETCHER, R ;
WIGLER, M ;
COLLINS, F .
CELL, 1990, 63 (04) :851-859
[3]  
BALLESTER R, UNPUB
[4]   RAS GENES [J].
BARBACID, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1987, 56 :779-827
[5]   THE GTPASE SUPERFAMILY - A CONSERVED SWITCH FOR DIVERSE CELL FUNCTIONS [J].
BOURNE, HR ;
SANDERS, DA ;
MCCORMICK, F .
NATURE, 1990, 348 (6297) :125-132
[6]   THE SACCHAROMYCES-CEREVISIAE CDC25 GENE-PRODUCT REGULATES THE RAS/ADENYLATE CYCLASE PATHWAY [J].
BROEK, D ;
TODA, T ;
MICHAELI, T ;
LEVIN, L ;
BIRCHMEIER, C ;
ZOLLER, M ;
POWERS, S ;
WIGLER, M .
CELL, 1987, 48 (05) :789-799
[7]   DIFFERENTIAL ACTIVATION OF YEAST ADENYLATE-CYCLASE BY WILD-TYPE AND MUTANT RAS PROTEINS [J].
BROEK, D ;
SAMIY, N ;
FASANO, O ;
FUJIYAMA, A ;
TAMANOI, F ;
NORTHUP, J ;
WIGLER, M .
CELL, 1985, 41 (03) :763-769
[8]   EFFECT OF A DOMINANT INHIBITORY HA-RAS MUTATION ON MITOGENIC SIGNAL TRANSDUCTION IN NIH 3T3 CELLS [J].
CAI, H ;
SZEBERENYI, J ;
COOPER, GM .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (10) :5314-5323
[9]   CHARACTERIZATION, CLONING AND SEQUENCE-ANALYSIS OF THE CDC25 GENE WHICH CONTROLS THE CYCLIC-AMP LEVEL OF SACCHAROMYCES-CEREVISIAE [J].
CAMONIS, JH ;
KALEKINE, M ;
GONDRE, B ;
GARREAU, H ;
BOYMARCOTTE, E ;
JACQUET, M .
EMBO JOURNAL, 1986, 5 (02) :375-380
[10]   ISOLATION OF MULTIPLE MOUSE CDNAS WITH CODING HOMOLOGY TO SACCHAROMYCES-CEREVISIAE CDC25 - IDENTIFICATION OF A REGION RELATED TO BCR, VAV, DBL AND CDC24 [J].
CEN, H ;
PAPAGEORGE, AG ;
ZIPPEL, R ;
LOWY, DR ;
ZHANG, K .
EMBO JOURNAL, 1992, 11 (11) :4007-4015