THE SPECTRA OF SUPEROPTIMAL CIRCULANT PRECONDITIONED TOEPLITZ-SYSTEMS

被引:20
作者
CHAN, RH
JIN, XQ
YEUNG, MC
机构
[1] Univ of Hong Kong, Hong Kong
关键词
TOEPLITZ MATRIX; SUPEROPTIMAL PRECONDITIONER; CIRCULANT MATRIX; PRECONDITIONED CONJUGATE GRADIENT METHOD;
D O I
10.1137/0728046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solutions of Hermitian positive-definite Toeplitz systems A(n)x = b by the preconditioned conjugate gradient method are studied. The preconditioner, called the "super-optimal" preconditioner, is the circulant matrix T(n) that minimizes parallel-to I - C(n)-1A(n) parallel-to F over all circulant matrices C(n). The convergence rate is known to be governed by the distribution of the eigenvalues of T(n)-1A(n). For n-by-n Toeplitz matrix A(n) with entries being Fourier coefficients of a positive function in the Wiener class, the asymptotic behaviour of the eigenvalues of the preconditioned matrix T(n)-1A(n) is found as n increases, and it is proved that they are clustered around one.
引用
收藏
页码:871 / 879
页数:9
相关论文
共 8 条
[1]  
CHAN R, IN PRESS LINEAR ALGE
[2]   TOEPLITZ EQUATIONS BY CONJUGATE GRADIENTS WITH CIRCULANT PRECONDITIONER [J].
CHAN, RH ;
STRANG, G .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (01) :104-119
[5]   AN OPTIMAL CIRCULANT PRECONDITIONER FOR TOEPLITZ-SYSTEMS [J].
CHAN, TF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :766-771
[6]  
GRENANDER U, 1984, TOEPLITZ FORMS THEIR
[7]  
STRANG G, 1986, STUD APPL MATH, V74, P171
[8]  
TYRTYSHNIKOV E, 1990, OPTIMAL SUPER OPTIMA